Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
what is number of quadratic equation that are unchanged by squaring their roots is There are four such cases x2 =0 root 0 (x-1)2=0 root 1 x(x+1)=0 roots 0 and 1 x2+x+1=0 roots ω and ω2 let x2 +bx +c=0 ............1 not let another equation whoose roots are square of this equation so X=x2 or x=√X put value of x X +b√X +c =0 or X +c =-b√X square X2 +c2 +2cX =b2X X2 +(2c-b2)X + c2 =0..................2 root of equation 2 is the square of root of equation 1 both equation will be same if their coefficient are in proportion 1/1 =b/(2c-b2) =c/c 2 b= 2c-b2 ................3 c=c2 ....................3 from equation 3 c=0 or 1 for c =0 b= 0 and -1 for c=1 b= 1 and -2 so four combination are possible
what is number of quadratic equation that are unchanged by squaring their roots is
There are four such cases x2 =0 root 0
(x-1)2=0 root 1
x(x+1)=0 roots 0 and 1
x2+x+1=0 roots ω and ω2
let x2 +bx +c=0 ............1
not let another equation whoose roots are square of this equation
so X=x2 or x=√X
put value of x
X +b√X +c =0
or X +c =-b√X
square
X2 +c2 +2cX =b2X
X2 +(2c-b2)X + c2 =0..................2
root of equation 2 is the square of root of equation 1
both equation will be same if their coefficient are in proportion
1/1 =b/(2c-b2) =c/c 2
b= 2c-b2 ................3
c=c2 ....................3
from equation 3 c=0 or 1
for c =0 b= 0 and -1
for c=1 b= 1 and -2
so four combination are possible
Graphical Understanding of Derivatives: A ladder 26 feet long is leaning against a wall. The ladder begins to move such that the bottom end moves away from the wall at a const
suresh invested rs.1080 in shares of face value rs.50 at rs.54.After receiving dividend on them at 8% he sold them at 52.In each of the transaction he paid 2 % brokerage.Hpw much d
Two circles touching internally at O. OXY, OAB straight lines, the latter passing through the centres. Prove that OX : OY = OA : OB. Given : Two circles touching internally a
Let 0 ! V1 ! ! Vk ! 0 be a long exact sequence of vector spaces with linear maps. Show that P (??1)i dim Vi = 0.
For complex number z, the minimum value of |z| + |z - cosa - i sina|+|z - 2(cosa + i sina )| is..? Solution) |z| + |z-(e^ia)| + |z-2(e^ia)| we see.....oigin , e^ia , 2e^ia , f
all basic knowledge related to geometry
how do we solve multiple optimal solution
1. A 3d rotation matrix has 9 (3 by 3) entries, and a 2d rotation matrix has 4 (2 by 2) entries. How many actual degrees of freedom are there in a 3d or 2d rotation? In other words
how to add a fraction with an uncommon denomoninator
How do you find the slope of a straight line?
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd