Integer exponents, Mathematics

Assignment Help:

We will begin this chapter by looking at integer exponents.  Actually, initially we will suppose that the exponents are +ve as well. We will look at zero & negative exponents in a bit.

Let's firstly recall the definition of exponentiation along with positive integer exponents.  If a is any number and n is a +ve integer then,

2040_Integer Exponents.png

Thus, for example,

                                                 35=3.3.3.3.3 = 243

We have to also employ this opportunity to remind ourselves regarding parenthesis and conventions which we have in regards to exponentiation & parenthesis. It will be specifically important while dealing with negative numbers.  Assume the following two cases.

                       (-2)4m                 and            -24

These will contain different values once we appraise them.  While performing exponentiation keep in mind that it is only the quantity which is instantly to the left of the exponent which gets the power.

In the initial case there is a parenthesis instantly to the left so this means that everything within the parenthesis gets the power. Thus, in this case we get,

                                       (-2)4 = ( -2) (-2) ( -2) ( -2) = 16

In the second case though, the 2 is instantly to the left of the exponent and thus it is only the 2 that gets the power. The minus sign will stay out in front & will NOT get the power.  In this case we have the following,

                            -24 = - (24 ) = - (2 ⋅ 2 ⋅ 2 ⋅ 2) = - (16) = -16

We put in some added parenthesis to help in illustrate this case. Generally they aren't involved and we would write instead,

                                                         -24  = -2 ⋅ 2 ⋅ 2 ⋅ 2 = -16

The instance of this discussion is to ensure that you pay attention to parenthesis. They are significant and avoiding parenthesis or putting in a set of parenthesis where they don't associate can totally change the answer to a problem.  Be careful.  Also, this warning regarding parenthesis is not just intended for exponents. We will have to be careful with parenthesis during this course.

Now, let's take care of zero exponents & negative integer exponents. In the particular case of zero exponents we have,

                                                                   a0 = 1        provided a ≠ 0

Notice down that it is needed that a not be zero. It is important since 00 is not defined.  Here is a rapid example of this property.

                                                 (-1268)0 = 1

We contain the following definition for -ve exponents.  If a is any non-zero number & n is a +ve integer (yes, positive) then,

                                                  a- n  =  1 /an

Can you see why we needed that a not be zero? Keep in mind that division by zero is not described and if we had let a to be zero we would have gotten division by zero.  Here are a couple of rapid examples for this definition,

5-2  = 1 /52 =  1/25                                             ( -4)-3  = 1/(-4)3 = 1/-64 =-(1/64)

Here are some main properties of integer exponents. Accompanying each of property will be a rapid example to show its use.  We shall be looking at more complex examples after the properties.


Related Discussions:- Integer exponents

Trigonometry, Ashow that sec^2x+cosec^2x cannot be less than 4

Ashow that sec^2x+cosec^2x cannot be less than 4

Estimate the rms value and prominent features, Figure shows the auto-spect...

Figure shows the auto-spectral density for a signal from an accelerometer which was attached to the front body of a car directly above its front suspension while it was driven at 6

Arc length and surface area revisited, Arc Length and Surface Area Revisite...

Arc Length and Surface Area Revisited We won't be working any instances in this part.  This section is here exclusively for the aim of summarizing up all the arc length and su

Linear independence and dependence, It is not the first time that we've loo...

It is not the first time that we've looked this topic. We also considered linear independence and linear dependence back while we were looking at second order differential equation

Special forms of polynomial, Special Forms There are a number of nice s...

Special Forms There are a number of nice special forms of some polynomials which can make factoring easier for us on occasion. Following are the special forms. a 2 + 2ab +

Prove that xa+ar=xb+br of circle, In figure, XP and XQ are tangents from X ...

In figure, XP and XQ are tangents from X to the circle with centre O. R is a point on the circle. Prove that XA+AR=XB+BR Ans:    Since the length of tangents from externa

Velocity and acceleration - three dimensional space, Velocity and Accelerat...

Velocity and Acceleration - Three Dimensional Space In this part we need to take a look at the velocity and acceleration of a moving object.    From Calculus I we are famili

Fermat''s little theorem, 1. How many closed necklaces of length 7 can be m...

1. How many closed necklaces of length 7 can be made with 3 colors? (notice that 7 is a prime) 2. How many closed necklaces of length 10 can be made with 3 colors (this is di erent

Intermediate value theorem, Intermediate Value Theorem Suppose that f(x...

Intermediate Value Theorem Suppose that f(x) is continuous on [a, b] and allow M be any number among f(a) and f(b).   There then exists a number c such that, 1. a 2. f (

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd