Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Normal Distribution
Figure 1
The normal distribution reflects the various values taken by many real life variables like the heights and weights of people or the marks of students in a large class. In all these cases a large number of observations are found to be clustered around the mean value m and their frequency drops sharply as we move away from the mean in either direction. For example, if the mean height of an adult in a city is 6 feet then a large number of adults will have heights around 6 feet. Relatively a few adults will have heights of 5 feet or 7 feet.
Further, if we draw samples of size n (where n is a fixed number over 30) from any population, then the sample mean will be (approximately) normally distributed with a mean equal to m i.e. the mean of the population.
The characteristics of normal probability distribution with reference to the above figure are
The curve has a single peak; thus it is unimodal.
The mean of a normally distributed population lies at the center of its normal curve.
Because of the symmetry of the normal probability distribution, the median and the mode of the distribution are also at the center.
The two tails of the normal probability distribution extend indefinitely and never touch the horizontal axis.
If s is the standard deviation of the normal distribution, 80% of the observation will be in the interval m -1.28s to m + 1.28s.
Figure 2
95% of the observations will be in the interval m - 1.96s to m + 1.96s.
Figure 3
98% of the observations will lie in the interval m - 2.33 s to m + 2.33 s. Figure 4
98% of the observations will lie in the interval m - 2.33 s to m + 2.33 s.
Figure 4
The Standard Normal Distribution is a normal distribution with a mean m = 0 and a standard deviation s = 1. The observation values in a standard normal distribution are denoted by the letter Z.
application of derivatives in engg.
Example of quotient rule : Let's now see example on quotient rule. In this, unlike the product rule examples, some of these functions will require the quotient rule to get the de
The figure provided below shows a hexagonal-shaped nut. What is the measure of ∠ABC? a. 120° b. 135° c. 108° d. 144° a. The measure of an angle of a regula
This problem involves the question of computing change for a given coin system. A coin system is defined to be a sequence of coin values v1 (a) Let c ≥ 2 be an integer constant
Example1 : Solve the subsequent system of equations. -2x 1 + x 2 - x 3 = 4 x 1 + 2x 2 + 3x 3 = 13 3x 1 + x 3 = -1 Solution The initial step is to write d
Question 1: (a) Show that, for all sets A, B and C, (i) (A ∩ B) c = A c ∩B c . (ii) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C). (iii) A - (B ∪ C) = (A - B) ∩ (A - C).
statement of gauss thm
Given, y = f(x) = 2 x 3 - 3x 2 + 4x +5 a) Use the Power function to find derivative of the function. b) Find the value of the derivative at x = 4.
Lucy's youth group increased $1,569 for charity. They decided to split the money evenly between 3 charities. How much will each charity receive? Divide the money raised through
Linda bought 35 yards of fencing at $4.88 a yard. How much did she spend? To multiply decimals, multiply generally, count the number of decimal places in the problem, then us
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd