Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Metal-Oxide-Semiconductor Structure
A traditional metal-oxide-semiconductor abbreviated as MOS structure is acquired by growing a layer of silicon dioxide (SiO2) on top of a silicon substrate and depositing a layer of metal or polycrystalline silicon (the latter is typically used). Since the silicon dioxide is a dielectric material, its structure is equal to a planar capacitor, along with one of the electrodes replaced by a semiconductor.
While a voltage is applied across a MOS structure, it changes the distribution of charges in the semiconductor. If we refer a P-type semiconductor (along with NA the density of acceptors, p the density of holes; p = NA in neutral bulk), a positive (+ive) voltage, VGB, from gate to body (see figure) forms a depletion layer by forcing the positively charged holes away from the gate-insulator or semiconductor interface, leaving exposed a carrier-free region of immobile, negatively charged acceptor ion. If VGB is sufficiently high, a high concentration of negative charge carriers forms in an inversion layer situated in a thin layer next to the interface in between the semiconductor and the insulator. Not like the MOSFET, in which the inversion layer electrons are supplied fast from the source or drain electrodes, in the MOS capacitor they are generated much more slowly by thermal generation by carrier generation and recombination centers in the depletion region.
Figure: MOSFET structure and channel formation
Usually, the gate voltage at which the volume density of electrons in the inversion layer is similar as the volume density of holes in the body is called the threshold voltage. This structure along with p-type body is the basis of the N-type MOSFET that needs the addition of an N-type source and drain regions.
States Ohm's law Ohm's law describes that the current I flowing in a circuit is directly proportional to the applied voltage V and inversely proportional to the resistance R, g
i need help with taxation assignment help, how do i get solution for it?
What are the main embedded system components? Main Embedded System Components a. Embeds hardware to provide computer as functionalities b. Embeds major application softw
A three-phase, wye-connected, 2300-V, four pole, 1000-kVA, 60-Hz synchronous machine has a synchronous reactanceXs = 5, a field resistance Rf = 10, and an approximately linear ma
design a single phase circuit from a supply point to a load
Q. What do you mean by Negative Clamper? During the positive half cycle the diode conducts and acts like a short circuit. The capacitor charges to peak value of input voltage V
An induction motor takes 350 kW at 0.8 power factor lagging while driving a load. When an overexcited synchronous motor taking 150 kW is connected in parallel with the induction mo
Define voltage divider rule Voltage drop at every resistor that connected by serial can be search by using voltage divider rules (VDR).
An audio amplifier with feedback needs gain of approximately 500 in a 3-dB bandwidth extending from 60 Hz to 25 kHz. Assume this is accomplished using a feedback network with ß=0.0
Speed Control of DC Series Motor A half wave circuit for the speed control of DC series motor is shown in figure and corresponding wave from is shown in figure consis
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd