Mean value theorem find out all the numbers c, Mathematics

Assignment Help:

Find out all the numbers c that satisfy the conclusions of the Mean Value Theorem for the given function.

                                              f ( x ) = x3 + 2 x2 - x     on [-1, 2]

Solution : There isn't in fact a lot to this problem other than to notice as well that since f (x) is a polynomial it is continuous and differentiable both (that means the derivative exists) on the interval given. Firstly let's find out the derivative.

                                                f ′ ( x ) = 3x2 + 4x -1

Now, to determine the numbers which satisfy the conclusions of the Mean Value Theorem all we have to do is plug this into the formula specified by the Mean Value Theorem.

f ′ (c ) = f ( 2) - f ( -1) /2 - ( -1)

3c2 + 4c -1 = 14 - 2/3 = 12/3 = 4

Now, it is just a quadratic equation,

3c2 + 4c -1 = 4

3c2 + 4c - 5 = 0

 By using the quadratic formula on this we obtain,

2076_mean value.png

Thus, solving out gives two values of c.

 

c =( -4 +√76) /6 = 0.7863                      c =( -4 +√76) /6 = -2.1196

 

Notice as well that only one of these is in fact in the interval given in the problem.  That means we will exclude the second one (As it isn't in the interval). The number which we're after in this problem is c = 0.7863

Be careful to not suppose that just one of the numbers will work.  This is possible for both of them to work.

 

Facts using the Mean Value Theorem

In both of these facts we are supposing the functions are continuous & differentiable on the interval [a,b].

Fact 1

If  f ′ ( x ) = 0 for all x in an interval ( a, b ) then f ( x ) is constant on ( a, b ) .

This fact is extremely easy to prove so let's do that here. Take any two x's within the interval ( a, b ) , say x1  and x2 .  Then since f ( x )is continuous & differential on [a,b] it has to also be continuous & differentiable on [ x1 , x2 ] . It means that we can apply the Mean Value Theorem for these two values of x.  Doing this we get,

f ( x2 ) - f ( x1 ) = f ′ (c ) ( x2 - x1 )

Where x1 < c < x2 .  But by supposition f ′ ( x ) = 0 for all x in an interval ( a, b ) and therefore in specific we must have,

                                                           f ′ (c ) = 0

Putting this in the equation above gives,

f ( x2 ) - f ( x1 ) = 0     ⇒ f ( x2 ) = f ( x1 )

Now, since x1  and   x2  where any two values of x in the interval ( a, b ) we can illustrates that we ought to have f ( x2 ) = f ( x1 ) for all x1  and x2  in the interval and it is exactly what it means for a function to be a  constant on the interval and thus we've proven the fact.

Fact 2

If  f ′ ( x ) = g′ ( x ) for all x in an interval (a, b ) then in this interval we have f ( x ) =g ( x ) + c where c refer to some constant.

This fact is direct result of the fact1 and it is also easy to prove. If we first define,

                                h ( x ) = f ( x ) - g ( x )

 Then since both f (x) & g (x) are continuous & differentiable in the interval ( a, b ) then so have to be h ( x ) . Thus the derivative of h ( x ) is,

                               h′ ( x ) = f ′ ( x ) - g ′ ( x )

Though, by supposition f ′ (x) = g ′ (x) for all x in an interval ( a, b ) and therefore we ought to have that h′ ( x ) = 0 for all x in an interval ( a, b ) .  Thus, by Fact 1 h ( x ) has to be constant on the interval.

It means that we have,

h ( x ) = c

f ( x ) - g ( x ) = c

f ( x ) +g ( x ) = c

Which is what we were attempting to show.


Related Discussions:- Mean value theorem find out all the numbers c

Introduction to addition and subtraction, INTRODUCTION :  When a child of ...

INTRODUCTION :  When a child of seven isn't able to solve the sum 23+9, what could the reasons be? When she is asked to subtract 9 from 16, why does she write 9 - 16 = 13 ?

How many days are there in a year, There are m months in a year, w weeks wi...

There are m months in a year, w weeks within a month and d days in a week. How many days are there in a year? In this problem, multiply d and w to obtain the total days in one

Can u please tell me how to solve, a triangle with side lengths in the rati...

a triangle with side lengths in the ratio 3:4:5 is inscribed in a circle of radius 3.what is the area of the triangle.

Prove that sec2+cosec2 can never be less than 2, Prove that sec 2 θ+cosec 2...

Prove that sec 2 θ+cosec 2 θ can never be less than 2. Ans:    S.T Sec 2 θ + Cosec 2 θ can never be less than 2. If possible let it be less than 2. 1 + Tan 2 θ + 1 + Cot

Rounding, round 200 to nearest hundreds

round 200 to nearest hundreds

Diabetes/Calcuation, #sally wieghs 100kg. According to the 50/50 basal bolu...

#sally wieghs 100kg. According to the 50/50 basal bolus rate be per meal bolus?

Probability: determine the optimal strategy , On a picnic outing, 2 two-pe...

On a picnic outing, 2 two-person teams are playing hide-and-seek. There are four  hiding locations (A, B, C, and D), and the two members of the hiding team can hide separately in a

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd