Mean value theorem find out all the numbers c, Mathematics

Assignment Help:

Find out all the numbers c that satisfy the conclusions of the Mean Value Theorem for the given function.

                                              f ( x ) = x3 + 2 x2 - x     on [-1, 2]

Solution : There isn't in fact a lot to this problem other than to notice as well that since f (x) is a polynomial it is continuous and differentiable both (that means the derivative exists) on the interval given. Firstly let's find out the derivative.

                                                f ′ ( x ) = 3x2 + 4x -1

Now, to determine the numbers which satisfy the conclusions of the Mean Value Theorem all we have to do is plug this into the formula specified by the Mean Value Theorem.

f ′ (c ) = f ( 2) - f ( -1) /2 - ( -1)

3c2 + 4c -1 = 14 - 2/3 = 12/3 = 4

Now, it is just a quadratic equation,

3c2 + 4c -1 = 4

3c2 + 4c - 5 = 0

 By using the quadratic formula on this we obtain,

2076_mean value.png

Thus, solving out gives two values of c.

 

c =( -4 +√76) /6 = 0.7863                      c =( -4 +√76) /6 = -2.1196

 

Notice as well that only one of these is in fact in the interval given in the problem.  That means we will exclude the second one (As it isn't in the interval). The number which we're after in this problem is c = 0.7863

Be careful to not suppose that just one of the numbers will work.  This is possible for both of them to work.

 

Facts using the Mean Value Theorem

In both of these facts we are supposing the functions are continuous & differentiable on the interval [a,b].

Fact 1

If  f ′ ( x ) = 0 for all x in an interval ( a, b ) then f ( x ) is constant on ( a, b ) .

This fact is extremely easy to prove so let's do that here. Take any two x's within the interval ( a, b ) , say x1  and x2 .  Then since f ( x )is continuous & differential on [a,b] it has to also be continuous & differentiable on [ x1 , x2 ] . It means that we can apply the Mean Value Theorem for these two values of x.  Doing this we get,

f ( x2 ) - f ( x1 ) = f ′ (c ) ( x2 - x1 )

Where x1 < c < x2 .  But by supposition f ′ ( x ) = 0 for all x in an interval ( a, b ) and therefore in specific we must have,

                                                           f ′ (c ) = 0

Putting this in the equation above gives,

f ( x2 ) - f ( x1 ) = 0     ⇒ f ( x2 ) = f ( x1 )

Now, since x1  and   x2  where any two values of x in the interval ( a, b ) we can illustrates that we ought to have f ( x2 ) = f ( x1 ) for all x1  and x2  in the interval and it is exactly what it means for a function to be a  constant on the interval and thus we've proven the fact.

Fact 2

If  f ′ ( x ) = g′ ( x ) for all x in an interval (a, b ) then in this interval we have f ( x ) =g ( x ) + c where c refer to some constant.

This fact is direct result of the fact1 and it is also easy to prove. If we first define,

                                h ( x ) = f ( x ) - g ( x )

 Then since both f (x) & g (x) are continuous & differentiable in the interval ( a, b ) then so have to be h ( x ) . Thus the derivative of h ( x ) is,

                               h′ ( x ) = f ′ ( x ) - g ′ ( x )

Though, by supposition f ′ (x) = g ′ (x) for all x in an interval ( a, b ) and therefore we ought to have that h′ ( x ) = 0 for all x in an interval ( a, b ) .  Thus, by Fact 1 h ( x ) has to be constant on the interval.

It means that we have,

h ( x ) = c

f ( x ) - g ( x ) = c

f ( x ) +g ( x ) = c

Which is what we were attempting to show.


Related Discussions:- Mean value theorem find out all the numbers c

Prove that prims algorithm produces a minimum spanning tree, Prove that Pri...

Prove that Prim's algorithm produces a minimum spanning tree of a connected weighted graph. Ans: Suppose G be a connected, weighted graph. At each iteration of Prim's algorithm

Setofoperations, write CxD being sure to use appropriate brackets and find ...

write CxD being sure to use appropriate brackets and find n(CxD)

GCF, Find the GCF of 70 and 112

Find the GCF of 70 and 112

Trigonometry, what are reason inside a circle?

what are reason inside a circle?

Explain equivalent fractions, Explain Equivalent Fractions ? Two fracti...

Explain Equivalent Fractions ? Two fractions can look different and still be equal. Different fractions that represent the same amount are called equivalent fractions. Ar

Basic Stat, You have been research for your statistics class on how nervous...

You have been research for your statistics class on how nervous the American adults are in general, you have decided to use HINTS 2007 data set that has a scale (going from 0 to 24

Constructions, Draw a line segment AB of length 4.4cm. Taking A as centre, ...

Draw a line segment AB of length 4.4cm. Taking A as centre, draw a circle of radius. 2cm and taking B as centre, draw another circle of radius 2.2cm. Construct tangents to each cir

Projections - vector, Projections The good way to understand projection...

Projections The good way to understand projections is to see a couple of diagrams. Thus, given two vectors a → and b → we want to find out the projection of b → onto a → . T

Solve for, a)Solve for ?, if tan5? = 1. Ans:    Tan 5? = 1        ⇒ ? ...

a)Solve for ?, if tan5? = 1. Ans:    Tan 5? = 1        ⇒ ? =45/5 ⇒ ?=9 o . b)Solve for ? if S i n ?/1 + C os ? + 1 +  C os ?/ S i n ? = 4 . Ans:  S i n ?/1 +

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd