Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Prove that Prim's algorithm produces a minimum spanning tree of a connected weighted graph.
Ans: Suppose G be a connected, weighted graph. At each iteration of Prim's algorithm, an edge should be found that connects a vertex in a subgraph to a vertex outside the subgraph. As G is connected, there will all time be a path to each vertex. The output T of Prim's algorithm is a tree, as the edge and vertex added to T are connected. Suppose T1 be a minimum spanning tree of G. If T1=T then T is a minimum spanning tree. If not, let e be the first edge added throughout the construction of T that is not in T1, and V be the set of vertices connected by the edges added previous to e. After that one endpoint of e is in V and the other is not. As T1 is a spanning tree of G, there is a path in T1 joining the two endpoints. As one travels along with the path, one should encounter an edge f joining a vertex in V to one that is not in V. Now here, at the iteration while e was added to T, f could as well have been added and it would be added in place of e if its weight was less than e. As f was not added, we conclude that w(f) ≥ w(e).
Suppose T2 be the graph acquired by removing f and adding e from T1. It is simple to show that T2 is connected, has similar number of edges as T1, and the total weights of its edges is not larger as compared to that of T1, therefore it is as well a minimum spanning tree of G and it consists of e and all the edges added before it throughout the construction of V. Repeat the steps above and we will eventually acquired a minimum spanning tree of G that is similar to T. This depicts T is a minimum spanning tree.
1. A train on the Bay Area Rapid Transit system has the ability to accelerate to 80 miles/hour in half a minute. A. Express the acceleration in miles per hour per minute. B
This problem involves the question of computing change for a given coin system. A coin system is defined to be a sequence of coin values v1 (a) Let c ≥ 2 be an integer constant
If F ( x,y, z) = x y² y4 i + ( 2x2 y + z) j - y3 z² k, find: i). question #Minimum 100 words accepted#
Consider the wave equation u_tt - u_xx = 0 with u(x, 0) = f(x) = 1 if -1 Please provide me a detailed answer. I had worked the most part of this question and the only I would like
Empty Set or Null Set It is a set which having no elements. It is usually designated by a Greek letter Ø, or else { }. The sets Ø and { Ø } are not the same thing since the
26 + 34=
Method In this method we eliminate either x or y, get the value of other variable and then substitute that value in either of the original equations to
Multiplication of complex numbers After that, let's take a look at multiplication. Again, along with one small difference, it's possibly easiest to just think of the complex n
How do I do a two-step problem?
Find out if the following series is convergent or divergent. Solution There really is not very much to these problems another than calculating the limit and then usin
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd