Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Prove that Prim's algorithm produces a minimum spanning tree of a connected weighted graph.
Ans: Suppose G be a connected, weighted graph. At each iteration of Prim's algorithm, an edge should be found that connects a vertex in a subgraph to a vertex outside the subgraph. As G is connected, there will all time be a path to each vertex. The output T of Prim's algorithm is a tree, as the edge and vertex added to T are connected. Suppose T1 be a minimum spanning tree of G. If T1=T then T is a minimum spanning tree. If not, let e be the first edge added throughout the construction of T that is not in T1, and V be the set of vertices connected by the edges added previous to e. After that one endpoint of e is in V and the other is not. As T1 is a spanning tree of G, there is a path in T1 joining the two endpoints. As one travels along with the path, one should encounter an edge f joining a vertex in V to one that is not in V. Now here, at the iteration while e was added to T, f could as well have been added and it would be added in place of e if its weight was less than e. As f was not added, we conclude that w(f) ≥ w(e).
Suppose T2 be the graph acquired by removing f and adding e from T1. It is simple to show that T2 is connected, has similar number of edges as T1, and the total weights of its edges is not larger as compared to that of T1, therefore it is as well a minimum spanning tree of G and it consists of e and all the edges added before it throughout the construction of V. Repeat the steps above and we will eventually acquired a minimum spanning tree of G that is similar to T. This depicts T is a minimum spanning tree.
Question Write a short note on the following: 1 The weekly salaries of a group of employees are given in the following table. Find the mean and standard deviation of the
The Shape of a Graph, Part II : In previous we saw how we could use the first derivative of a function to obtain some information regarding the graph of a function. In this secti
Sin129
For schedule consistency, you decide to require each officer to report for their eight-hour shift at 12 AM, 4 AM, 8 AM, 12 PM, 4 PM, or 8 PM. As the Director of Public Safety, you
Applications of derivatives : At last, let's not forget about our applications of derivatives. Example Assume that the amount of air in a balloon at any time t is specified
Here we need to see the inverse of a matrix. Provided a square matrix, A, of size n x n if we can get the other matrix of similar size, B that, AB = BA = I n after that we call
considring the concept of product life cycle,where would you put viedo games in thier life cycle?
we know that derivative of x 2 =2x. now we can write x 2 as x+x+x....(x times) then if we take defferentiation we get 1+1+1+.....(x times) now adding we get x . then which is wro
In the graphical representation of a frequency distribution if the distance between mode and mean is k times the distance between median and mean then find the value of k.
Frequency Distribution or Variance Ratio Distribution This was developed by R. A Fisher in 1924 and is normally defined in terms of the ratio of the variances of two usually d
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd