Determine y' for xy = 1 by implicit differentiation, Mathematics

Assignment Help:

Determine y′ for xy = 1 .

Solution : There are in fact two solution methods for this problem.

Solution 1: It is the simple way of doing the problem.  Just solve for y to obtain the function in the form which we're utilized to dealing with and then differentiate.

y = 1/x ⇒             y′ = - 1/x2

Hence, that's easy sufficient to do.  However, there are some functions for which it can't be done. That's where second solution method comes to play.

Solution 2 (through implicit differentiation):

In this we're going to leave the function in the form which we were given & work with it in that form.  Though, let's recall from the first part of this solution that if we could solve out for y then we will get y like a function of x.  In other terms, if we could solve out for y (as we could in this case, however won't always be capable to do) we get y = y (x).  Let's rewrite the equation to note down this.

                                          xy = x y ( x ) = 1

Be careful here and note down that while we write y ( x ) we don't mean y times x.  What we are noting at this time is that y is some (probably unknown) function of x. It is important to recall while doing this solution technique.

In this solution the next step is to differentiate both sides w.r.t. x as follows,

                                 d ( x y ( x ))/ dx = d (1)/ dx

The right side is simple.  It's just the derivative of constant. The left side is also simple, but we've got to identify that we've in fact got a product here, the x and they ( x ) .  Thus to do the derivative of the left side we'll have to do the product rule.  By doing this gives,

 (1) y ( x ) + x d ( y ( x )) /dx= 0

Now, recall that we have the given notational way of writing the derivative.

d ( y ( x )) / dx = dy/ dx = y′

By using this we get the following,

y + xy′ = 0

Note as well that we dropped the ( x ) on the y as it was just there to remind us that the y was a function of x & now that we've taken the derivative it's no longer needed really. We just desired it in the equation to identify the product rule while we took the derivative.

thus, let's now recall just what were we after. We were after the derivative,  y′ , and notice that there is now a  y′ in the equation.  Thus, to get the derivative all that we have to do is solve the equation for  y′ .

                                                                   y′ = - y/ x

There it is. By using the second solution technique it is our answer. It is not similar with the first solution however. Or at least it doesn't look like the similar derivative that we got from the first solution.  However, recall that we actually do know what y is in terms of x and if we plug that in we will get,

                                            y′ = -       (1/x) /x= -1/ x2

that is what we got from the first solution.  Regardless of the solution technique utilized we should get the same derivative.


Related Discussions:- Determine y' for xy = 1 by implicit differentiation

Find out the surface area of the solid - parametric curve, Find out the sur...

Find out the surface area of the solid acquired by rotating the following parametric curve about the x-axis. x = cos 3 θ y = sin 3 θ  0 ≤ θ ≤ ?/2 Solution We wil

If 0.3 is added to 0.2 times the quantity x - 3, If 0.3 is added to 0.2 tim...

If 0.3 is added to 0.2 times the quantity x - 3, the result is 2.5. What is the value of x? The statement, "If 0.3 is added to 0.2 times the quantity x - 3, the result is 2.5,

Purely imaginary number, It is totally possible that a or b could be zero a...

It is totally possible that a or b could be zero and thus in 16 i the real part is zero.  While the real part is zero we frequently will call the complex numbers a purely imaginar

Conditional probability - rules of probability, Conditional probability - R...

Conditional probability - Rules of Probability This is the probability associated with combinations of events but given that some prior result has already been achieved with o

Linear programming, what is the advantage of dual linear problem programmin...

what is the advantage of dual linear problem programming when we maximize profit then what is need to minimize cost of the same problem

Problems related to applying operations in learning maths, PROBLEMS RELATED...

PROBLEMS RELATED TO APPLYING OPERATIONS :  Some of us were testing Class 4 children with addition and subtraction problems. We gave them sums that were written horizontally and th

PDE, Consider the wave equation utt - uxx = 0 with u(x, 0) = f(x) = 1 if-1 ...

Consider the wave equation utt - uxx = 0 with u(x, 0) = f(x) = 1 if-1 ut(x, 0) = ?(x) =1 if-1 Sketch snapshots of the solution u(x, t) at t = 0, 1, 2 with justification (Hint: Sket

Estimate the probability, The following (artificial) data record the length...

The following (artificial) data record the length of stay (in days) spent on a psychiatric ward for 28 consecutive patients who have been sectioned under the mental health act, cla

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd