Determine y' for xy = 1 by implicit differentiation, Mathematics

Assignment Help:

Determine y′ for xy = 1 .

Solution : There are in fact two solution methods for this problem.

Solution 1: It is the simple way of doing the problem.  Just solve for y to obtain the function in the form which we're utilized to dealing with and then differentiate.

y = 1/x ⇒             y′ = - 1/x2

Hence, that's easy sufficient to do.  However, there are some functions for which it can't be done. That's where second solution method comes to play.

Solution 2 (through implicit differentiation):

In this we're going to leave the function in the form which we were given & work with it in that form.  Though, let's recall from the first part of this solution that if we could solve out for y then we will get y like a function of x.  In other terms, if we could solve out for y (as we could in this case, however won't always be capable to do) we get y = y (x).  Let's rewrite the equation to note down this.

                                          xy = x y ( x ) = 1

Be careful here and note down that while we write y ( x ) we don't mean y times x.  What we are noting at this time is that y is some (probably unknown) function of x. It is important to recall while doing this solution technique.

In this solution the next step is to differentiate both sides w.r.t. x as follows,

                                 d ( x y ( x ))/ dx = d (1)/ dx

The right side is simple.  It's just the derivative of constant. The left side is also simple, but we've got to identify that we've in fact got a product here, the x and they ( x ) .  Thus to do the derivative of the left side we'll have to do the product rule.  By doing this gives,

 (1) y ( x ) + x d ( y ( x )) /dx= 0

Now, recall that we have the given notational way of writing the derivative.

d ( y ( x )) / dx = dy/ dx = y′

By using this we get the following,

y + xy′ = 0

Note as well that we dropped the ( x ) on the y as it was just there to remind us that the y was a function of x & now that we've taken the derivative it's no longer needed really. We just desired it in the equation to identify the product rule while we took the derivative.

thus, let's now recall just what were we after. We were after the derivative,  y′ , and notice that there is now a  y′ in the equation.  Thus, to get the derivative all that we have to do is solve the equation for  y′ .

                                                                   y′ = - y/ x

There it is. By using the second solution technique it is our answer. It is not similar with the first solution however. Or at least it doesn't look like the similar derivative that we got from the first solution.  However, recall that we actually do know what y is in terms of x and if we plug that in we will get,

                                            y′ = -       (1/x) /x= -1/ x2

that is what we got from the first solution.  Regardless of the solution technique utilized we should get the same derivative.


Related Discussions:- Determine y' for xy = 1 by implicit differentiation

Find third order partial derivatives, Question: Find all third order pa...

Question: Find all third order partial derivatives for the function   F(x,y)= log xy+ e (x+y) -x/y.

Jamal, jamal works every morning in his garden. yesterday he worked 3 AND 3...

jamal works every morning in his garden. yesterday he worked 3 AND 3-4HOURS. HE SPENT 1-3 OF THE TIME PULLING WEEDS. HOW MANY HOURS DID JAMAL SPEND PULLING WEEDS?

Estimate root of given equations, The positive value of k for which x 2 +K...

The positive value of k for which x 2 +Kx +64 = 0 & x 2 - 8x + k = 0 will have real roots . Ans: x 2 + K x + 64 = 0 ⇒  b 2 -4ac > 0 K 2 - 256 > 0 K

Real constant and difference equation, Derive for the filter from z=a and p...

Derive for the filter from z=a and poles at z=b andz=c, where a, b, c are the real constants the corresponding difference equation. For what values of parameters a, b, and c the fi

Prove that ac2 =ab2 + bc2+2bcxbd, If ABC is an obtuse angled triangle, obtu...

If ABC is an obtuse angled triangle, obtuse angled at B and if AD⊥CB Prove that AC 2 =AB 2 + BC 2 +2BCxBD Ans:    AC 2 = AD 2 + CD 2 = AD 2 + (BC + BD) 2 = A

Solution of rectilinear figures, A straight line AB on the side of a hill i...

A straight line AB on the side of a hill is inclined at 15.0° to the horizontal. The axis of a tunnel 486ft. long is inclined 28.6° below the horizontal lies in a vertical plane wi

Physics of medical imaging, A radiograph is made of an object with a width ...

A radiograph is made of an object with a width of 3 mm using an x-ray tube with a 2 mm focal spot at a source-to-film distance of 100 cm. The object being imaged is 15 cm from the

Probability: determine the optimal strategy , On a picnic outing, 2 two-pe...

On a picnic outing, 2 two-person teams are playing hide-and-seek. There are four  hiding locations (A, B, C, and D), and the two members of the hiding team can hide separately in a

Constructing a dfa/nfa or a regex), Let ∑ = (0, 1). Define the following la...

Let ∑ = (0, 1). Define the following language: L = {x | x contains an equal number of occurrences of 01 and 10} Either prove L is regular (by constructing a DFA/NFA or a rege

Assignment Help, I would like to work on Assignment help in Mathematics

I would like to work on Assignment help in Mathematics

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd