Gaussian elimination, Mathematics

Assignment Help:

Example1:  Solve the subsequent system of equations.

-2x1 + x2 - x3 = 4

x1 + 2x2 + 3x3  = 13

3x1 + x3 = -1

Solution

The initial step is to write down the augmented matrix for above system. Keep in mind that coefficients of terms which aren't present are zero.

1471_Gaussian Elimination.png

Here, we want the entries below the main diagonal to be zero. The most main diagonal has been colored red thus we can keep track of it throughout this first illustration.  For reasons which will be apparent eventually we would prefer to find the main diagonal entries to all be ones suitably.

We can find a one in the upper most spot through noticing that if we interchange the first and second row we will find a one in the uppermost spot for free.  Therefore let's do that.

293_Gaussian Elimination1.png

This time we need to find the last two entries as -2 and 3 in the first column to be zero.  We can do this by using the third row operation. Note that if we get 2 times the first row and add this to the second row we will find a zero in the second entry into the first column and if we get -3 times the first row to the third row we will find the 3 to be a zero. We can do both of such operations at similar time so let's do that.

949_Gaussian Elimination2.png

Before proceeding along with the subsequent step, let's ensure that you followed what we just did. Let's see the first operation which we performed. This operation needs to multiply an entry in row 1 with 2 and add it to the consequent entry in row 2 after that replace the old entry in row 2 along with this new entry. The subsequent are the four individual operations which we performed to do this.

2 (1) + (-2) = 0

2 (2) + 1 = 5

2 (3) + (-1) = 5

2 (13) + 4 = 30

 

 

Okay, the subsequent step optional, although again is convenient to do. Technically, the 5th element in the second column is okay to leave. Conversely, it will create our life easier down the road if this is a 1. We can utilize the second row operation to support this. We can divide the entire row with 5. Doing it gives,

1023_Gaussian Elimination3.png

The subsequent step is to then utilize the third row operation to create the -6 in the second column in a zero.

1099_Gaussian Elimination4.png

Here, officially we are complete, but again it's somewhat convenient to find all ones on the main diagonal thus we'll do one last step.

1312_Gaussian Elimination5.png

We can now change back to equations.

2028_Gaussian Elimination6.png

     x1 + 2x2 + 3x3 = 13

⇒              x2 + x3 = 6

                   x3 = 2

At this point the solving is fairly easy.  We find x3 for free and once we find that we can plug it in the second equation and find x2. We can after that use the first equation to find x1. Remember as well that having 1's along the main diagonal helped somewhat along with this process.

The solution to that system of equation is,

x1 = -1

 x2  = 4

 x3  = 2

The process used in this example is termed as Gaussian Elimination.


Related Discussions:- Gaussian elimination

Prove that sec2+cosec2 can never be less than 2, Prove that sec 2 θ+cosec 2...

Prove that sec 2 θ+cosec 2 θ can never be less than 2. Ans:    S.T Sec 2 θ + Cosec 2 θ can never be less than 2. If possible let it be less than 2. 1 + Tan 2 θ + 1 + Cot

Permatuation and combination problem, A,B,C are natural numbers and are in ...

A,B,C are natural numbers and are in arithmetic progressions and a+b+c=21.then find the possible values for a,b,c Solution) a+b+c=21 a+c=2b 3b=21 b=7 a can be 1,2,3,4,5,6 c c

Shares, a person having rs.10 shares of value rs.6000 in a company which pa...

a person having rs.10 shares of value rs.6000 in a company which pays a 7% dividend invested the money gained by selling those shares and bought rs.25 shares at rs.24 per share in

Computation of covariance - ungrouped data, Computation of Covariance ...

Computation of Covariance Ungrouped Data          For a population consisting of paired ungrouped data points {X, Y} where,

Example of vector, Provide the vector for each of the following. (a) The...

Provide the vector for each of the following. (a) The vector from (2, -7, 0) -  (1, - 3, - 5 ) (b) The vector from (1,-3,-5) - (2, - 7, 0) (c) The position vector for ( -

Simple interest, find the simple interest on Rs. 68,000 at 50/3 per annum f...

find the simple interest on Rs. 68,000 at 50/3 per annum for 9 month

Detremine the surface area to the nearest inch, If a tabletop has a diamete...

If a tabletop has a diameter of 42 in, Detremine the surface area to the nearest inch? (π = 3.14) a. 1,384 in 2 b. 1,319 in 2 c. 1,385 in 2 d. 5,539 in 2 c. Th

Convert the points into cartesian and polar coordinates, Convert each of th...

Convert each of the following points into the specified coordinate system.  (a) (-4, 2 Π /3) into Cartesian coordinates. (b) (-1,-1) into polar coordinates.  Solution

Equilibrium solutions, In the earlier section we modeled a population depen...

In the earlier section we modeled a population depends on the assumption that the growth rate would be a constant. Though, in reality it doesn't make much sense. Obviously a popula

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd