Green –beard strategy, Game Theory

Assignment Help:

1  A, Explain how a person can be free to choose but his or her choices are casually determined by past event

2  B , Draw the casual tree for newcomb's problem when Eve can't perfectly detect Adam's casual history. The probabilities of Eve rightly or wrongly detecting whether adam will later open only the black box instead of opening both boxes are respectively denoted r and w. recal that L denotes the smaller amount of money always in the clear box and M denotes the larger amount of money that eve might might put in side the opaque box  E A

C, Derive the two expected payoffs formulas E A (1B / r, w) and E A ( (2B /r,w) and use them to solve for another formula that equals the smallest value of M (denoted M*) required in order for Adam's expected payoff from opening only the opaque box to exceed that from opening both boxes by a multiple of as least ( a sign that looks like derivative)  L     what is the resulting formula for M*. finally suppose (L, sign that looks like derivative I don't know   )  = (300, 95), (r,w)=(.58, .43) and use the formula for M* to calculate the numerical value of M* for this case

 2.   A, Suppose a CD player player tries to detect whether its partner is C player instead of a DD player by looking for external signals that are at least as typical for DD players than DD players than for cd players draw a diagram tp explain how two boundariesb.L and bu  are optimally determined by the minimum likehood ration Lmin. Show on the diagram where it is optimal to respond C versus D. Also explain what happens to the boundries when detection becomes more cautious by raising the minimum likehood ration

b. What is meaning of the LDD detection strategy

c. What is the main problem with the green -beard strategy? Explain how the LDD strategy overcomes this problem

 3. A. If CD players are able to use the LDD strategy better than pure chance then explain what happens to the signal reliability ration as a CD player detects more cautiously

 b. Assume a population contains either CD ot DD players where each player is randomly matched with partner taken from the whole population. Also assume the fear and greed payoff differences are equal. What are the expected payoff formulas for CD players  [ denoted  E(DD/x CD  ) ]  depending on the fraction of CD players in the population, denoted x CD  \

c. Use expected payoff formulas of part C to algebraically derive an inequality for the signal reliability ration r/w that determines when the CD  players will outperform the DD players. Thenuse this inequality with Part A, to explain how CD players can always outperform DD players starting from any positive initial fraction of CD players  x CD  > 0.

 4, A. Use the inequality derived for part C question 3; to obtain an inequality required x *CD  = 1 to remain stable against DD invaders. Also draw the ROC diagram discussed in class for visually representing this stability inequality

B. Explain how a diagram similar to that shown in part A can be used to derive a prediction of what will happen to the CD players equilibrium probability of cooperating if the fear and greed pay off difference decrease relative to the cooperation payoff difference

C. Again explain how a diagram similar to that shown in Part A can be used to derive a prediction of what will happen to the CD player equilibrium probability of cooperating if they exchange email messages instead of talking talk face to face


Related Discussions:- Green –beard strategy

Draw a table representing the prisoner?s dilemma game, (a) Draw a table rep...

(a) Draw a table representing the Prisoner?s Dilemma game. (b) Give a story inspired by real life for the prisoner?s dilemma game that is di¤erent from the story about the two crim

State the profit maximization problem of firm, 1. Consider two firms produc...

1. Consider two firms producing an identical product in a market where the demand is described by p = 1; 200 2Y. The corresponding cost functions are c 1 (y 1 ) = y 2 1 and c 2

All pure nash equilibrium for strategic form game, write a program in c tha...

write a program in c that takes n number finite players using gambit format and output is to be all pure strategy nash equilibrium

Games with sequential moves-president liv problem , The most basic version ...

The most basic version of a LIV allows the executive office holder (Governor or President) to accept part of a bill passed by the legislature (so that part becomes law) and to veto

Nature player , A participant in a very game who selects from among her met...

A participant in a very game who selects from among her methods randomly, primarily based on some predetermined chance distribution, instead of strategically, primarily based on pa

Coalitional game and matching markets, 1. This question and the next is bas...

1. This question and the next is based on the following description. Consider the coalitional game (referred to as Game 1) given by: N = {1,2,3,4}; v(N) = 3, v{i} = 0, i = 1,...,4,

Matching pennies, Matching Pennies Scenario To determine who is needed t...

Matching Pennies Scenario To determine who is needed to try to to the nightly chores, 2 youngsters initial choose who are represented by "same" and who are represented by "diffe

Equilibrium, An equilibrium, (or Nash equilibrium, named when John Nash) ma...

An equilibrium, (or Nash equilibrium, named when John Nash) may be a set of methods, one for every player, such that no player has incentive to unilaterally amendment her action. P

Determine the pure strategy nash equilibria, a) Define the term Nash equili...

a) Define the term Nash equilibrium b) You are given the following pay-off matrix:   Strategies for player 1   Strategies for player 2

Application to business strategy, Game Theory has evolved since its start a...

Game Theory has evolved since its start as a thought exercise for academic mathematicians. Taught in economics departments , top business schools, and the strategic analysis, even

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd