Green –beard strategy, Game Theory

Assignment Help:

1  A, Explain how a person can be free to choose but his or her choices are casually determined by past event

2  B , Draw the casual tree for newcomb's problem when Eve can't perfectly detect Adam's casual history. The probabilities of Eve rightly or wrongly detecting whether adam will later open only the black box instead of opening both boxes are respectively denoted r and w. recal that L denotes the smaller amount of money always in the clear box and M denotes the larger amount of money that eve might might put in side the opaque box  E A

C, Derive the two expected payoffs formulas E A (1B / r, w) and E A ( (2B /r,w) and use them to solve for another formula that equals the smallest value of M (denoted M*) required in order for Adam's expected payoff from opening only the opaque box to exceed that from opening both boxes by a multiple of as least ( a sign that looks like derivative)  L     what is the resulting formula for M*. finally suppose (L, sign that looks like derivative I don't know   )  = (300, 95), (r,w)=(.58, .43) and use the formula for M* to calculate the numerical value of M* for this case

 2.   A, Suppose a CD player player tries to detect whether its partner is C player instead of a DD player by looking for external signals that are at least as typical for DD players than DD players than for cd players draw a diagram tp explain how two boundariesb.L and bu  are optimally determined by the minimum likehood ration Lmin. Show on the diagram where it is optimal to respond C versus D. Also explain what happens to the boundries when detection becomes more cautious by raising the minimum likehood ration

b. What is meaning of the LDD detection strategy

c. What is the main problem with the green -beard strategy? Explain how the LDD strategy overcomes this problem

 3. A. If CD players are able to use the LDD strategy better than pure chance then explain what happens to the signal reliability ration as a CD player detects more cautiously

 b. Assume a population contains either CD ot DD players where each player is randomly matched with partner taken from the whole population. Also assume the fear and greed payoff differences are equal. What are the expected payoff formulas for CD players  [ denoted  E(DD/x CD  ) ]  depending on the fraction of CD players in the population, denoted x CD  \

c. Use expected payoff formulas of part C to algebraically derive an inequality for the signal reliability ration r/w that determines when the CD  players will outperform the DD players. Thenuse this inequality with Part A, to explain how CD players can always outperform DD players starting from any positive initial fraction of CD players  x CD  > 0.

 4, A. Use the inequality derived for part C question 3; to obtain an inequality required x *CD  = 1 to remain stable against DD invaders. Also draw the ROC diagram discussed in class for visually representing this stability inequality

B. Explain how a diagram similar to that shown in part A can be used to derive a prediction of what will happen to the CD players equilibrium probability of cooperating if the fear and greed pay off difference decrease relative to the cooperation payoff difference

C. Again explain how a diagram similar to that shown in Part A can be used to derive a prediction of what will happen to the CD player equilibrium probability of cooperating if they exchange email messages instead of talking talk face to face


Related Discussions:- Green –beard strategy

Nature , The title of a "player" who selects from among her methods randoml...

The title of a "player" who selects from among her methods randomly, primarily based on some predetermined chance distribution, instead of strategically, primarily based on payoffs

Nature player , A participant in a very game who selects from among her met...

A participant in a very game who selects from among her methods randomly, primarily based on some predetermined chance distribution, instead of strategically, primarily based on pa

Find all ne of the game, 1. Find all NE of the following 2×2 game. Determin...

1. Find all NE of the following 2×2 game. Determine which of the NE are trembling-hand perfect. 2. Consider the following two-person game where player 1 has three strategie

Edgeworth, Living from 1845 to 1926, Edgeworth's contributions to Economics...

Living from 1845 to 1926, Edgeworth's contributions to Economics still influence trendy game theorists. His Mathematical Psychics printed in 1881, demonstrated the notion of compet

Common information, An item of information of data in a very game is common...

An item of information of data in a very game is common grasp ledge if all of the players realize it (it is mutual grasp ledge) and every one of the players grasp that each one dif

equilibrium refinement, An equilibrium refinement provides how of choosing...

An equilibrium refinement provides how of choosing one or many equilibria from among several in a very game. several games might contain many Nash equilibria, and therefore supply

Pareto coordination game, Scenario Two corporations should simultaneousl...

Scenario Two corporations should simultaneously elect a technology to use for his or her compatible merchandise. If the corporations adopt totally different standards, few sales

Leadership in an oil production game, Leadership in an Oil Production Game ...

Leadership in an Oil Production Game Students can be broken into pairs to play this game once, witheach student's representing one country; then each shouldswitch partners and

Rollback , Rollback (often referred to as backward induction) is an iterati...

Rollback (often referred to as backward induction) is an iterative method for solving finite in depth kind or sequential games. First, one determines the optimal strategy of the pl

Backward induction, Backward induction is an iterative procedure for resolv...

Backward induction is an iterative procedure for resolving finite general form or sequential games. First, one decides the finest policy of the player who makes the last move of th

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd