General perspective transformation, Computer Graphics

Assignment Help:

General Perspective transformation w.r.t. an arbitrary center of projection

Suppose here that the COP is at C(a,b,c), as demonstrated in Figure.

By Figure, the vectors CP and CP' have the simila direction. The vector CP' is a factor of CP, which is CP'=α. CP

Hence, (x'-a)= α.(x-a)                                  z

(y'-b)= α.(y-b)

(z'-c)= α.(z-c)

1163_General Perspective Transformation.png

We know about the projection plane passing via a reference point R0(x0,y0,z0) and consisting a normal vector N= n1I+n2J+n3K, satisfies the subsequent equation:

n1.(x-x0)+n2.(y-y0)+n3.(z-z0)=0

When P'(x',y',z') lies upon this plane then we have:

n1.(x'-x0)+n2.(y'-y0)+n3.(z'-z0)=0

now substitute the value of x', y' and z' then we have:

α= (n1.(x0-a)+n2.(y0-b)+n3.(z0-c))/( n1.(x-a)+n2.(y-b)+n3.(z-c))

=((n1.x0+n2.y0+n3.z0)-(n1.a+n2.b+n3.c))/(n1.(x-a)+n2.(y-b)+n3.(z-c))

=(d0-d1)/(n1.(x-a)+n2.(y-b)+n3.(z-c))

=d/(n1.(x-a)+n2.(y-b)+n3.(z-c))

Currently,  d=d0-d1=  (n1.x0+n2.y0+n3.z0) - (n1.a+n2.b+n3.c)  shows  perpendicular distance from center of projection, C to the projection plane.

In order to determine the general perspective transformation matrix so we have to proceed as given here:

Translate COP, C (a, b, c) to the origin.  Now, R'0=(x0-a, y0-b, z0-c) turn sinto the reference point of the translated plane which is normal vector will remain similar.

By applying the general perspective transformation as Pper,N,R'o

Now translate the origin back to C as.

116_General Perspective Transformation 2.png

Here d = N.CR' 0 = d0 - d1 = (n1. x0 + n2. Y0 + n3.z0) - (n1.a+n2.b +n3.c)

= n1. (x0 - a) + n2. (y0 - b) + n3. (z0 - c)

And also d1 = n1.a + n2.b + n3.c


Related Discussions:- General perspective transformation

Explain bresenham''s circle drawing algorithm, Question 1 Explain Bresenha...

Question 1 Explain Bresenham's Circle Drawing Algorithm Question 2 Derive the matrix for inverse transformation Question 3 Discuss the following Raster Graphic Algorithm

Macintosh - hardware for computer animation, Macintosh - Hardware for compu...

Macintosh - Hardware for computer animation It was originally designed to be graphic and desktop publishing machines. Macs did not turn into which widely known till recently, a

2d line segment generation - 2d shape primitives, 2D Line Segment Generatio...

2D Line Segment Generation  A digitally plotted line is basically an approximation of infinite number of points on an abstract line segment by only a finite number of points on

What are the important properties of bezier curve, What are the important p...

What are the important properties of Bezier Curve?  It requires only four control points It always passes by the first and last control points The curve lies enti

Avi codec format, AVI CODEC Formats: Various AVI file formats other than t...

AVI CODEC Formats: Various AVI file formats other than the DV Types 1 and 2 formats are there discussed earlier. All such the other formats involve the utilization of Compressor o

Multimedia and its features, Multimedia as the name suggests MULTI and MEDI...

Multimedia as the name suggests MULTI and MEDIA utilizes some media for example: text, graphics, audio, video and also animation, to convey information. Multimedia also consider to

Progressive scan in image capture formats, Progressive Scan: Progressive o...

Progressive Scan: Progressive or non-interlaced scanning is a process which displays, transmits or stores moving images wherein, the lines of all frame are drawn in order. It is i

What is vanishing point and view reference point, What is vanishing point a...

What is vanishing point and view reference point? The perspective projections of any set of parallel lines that are not parallel to the projection plane converge to appoint cal

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd