General perspective transformation, Computer Graphics

Assignment Help:

General Perspective transformation w.r.t. an arbitrary center of projection

Suppose here that the COP is at C(a,b,c), as demonstrated in Figure.

By Figure, the vectors CP and CP' have the simila direction. The vector CP' is a factor of CP, which is CP'=α. CP

Hence, (x'-a)= α.(x-a)                                  z

(y'-b)= α.(y-b)

(z'-c)= α.(z-c)

1163_General Perspective Transformation.png

We know about the projection plane passing via a reference point R0(x0,y0,z0) and consisting a normal vector N= n1I+n2J+n3K, satisfies the subsequent equation:

n1.(x-x0)+n2.(y-y0)+n3.(z-z0)=0

When P'(x',y',z') lies upon this plane then we have:

n1.(x'-x0)+n2.(y'-y0)+n3.(z'-z0)=0

now substitute the value of x', y' and z' then we have:

α= (n1.(x0-a)+n2.(y0-b)+n3.(z0-c))/( n1.(x-a)+n2.(y-b)+n3.(z-c))

=((n1.x0+n2.y0+n3.z0)-(n1.a+n2.b+n3.c))/(n1.(x-a)+n2.(y-b)+n3.(z-c))

=(d0-d1)/(n1.(x-a)+n2.(y-b)+n3.(z-c))

=d/(n1.(x-a)+n2.(y-b)+n3.(z-c))

Currently,  d=d0-d1=  (n1.x0+n2.y0+n3.z0) - (n1.a+n2.b+n3.c)  shows  perpendicular distance from center of projection, C to the projection plane.

In order to determine the general perspective transformation matrix so we have to proceed as given here:

Translate COP, C (a, b, c) to the origin.  Now, R'0=(x0-a, y0-b, z0-c) turn sinto the reference point of the translated plane which is normal vector will remain similar.

By applying the general perspective transformation as Pper,N,R'o

Now translate the origin back to C as.

116_General Perspective Transformation 2.png

Here d = N.CR' 0 = d0 - d1 = (n1. x0 + n2. Y0 + n3.z0) - (n1.a+n2.b +n3.c)

= n1. (x0 - a) + n2. (y0 - b) + n3. (z0 - c)

And also d1 = n1.a + n2.b + n3.c


Related Discussions:- General perspective transformation

Representational animation - computer animation, Representational Animation...

Representational Animation - Computer Animation This method permits an object to change its shape throughout the animation. There are three sub-types to this. The initial is th

Illustration of a clipping window - raster graphics, Illustration of a Clip...

Illustration of a Clipping window ABCD is placed as follows: A (100, 10), B (160, 10, C (160, 40), D (100, 40) By using Sutherland-Cohen clipping algorithm determine the vis

Clip a line segment - cyrus beck line clipping algorithm, How does the Cyru...

How does the Cyrus Beck line clipping algorithm, clip a line segment whether the window is non convex? Solution : see the following figure 13, now the window is non-convex in s

Different advertising hooks, Question: (a) Name two visual effects you...

Question: (a) Name two visual effects you would use to communicate: i. Good old days ii. Rebellion iii. Fear (b) Explain each of your answers given in section (a).

What is a dot size, What is a dot size? Dot size may be explained as th...

What is a dot size? Dot size may be explained as the diameter of a single dot on the devices output. Dot size is also known as the Spot size.

How many times will vertex appear in the intersection points, 1. For the po...

1. For the polygon shown in Figure on the next page, how many times will the vertex V 1 appear in the set of intersection points for the scan line passing through that point?  How

Explain the term- control, Explain the term- Control Traffic lights (co...

Explain the term- Control Traffic lights (controlling the sequence of lights to maintain optimum traffic flow), chemical and nuclear plants (opening and closing valves, safety

Define emissive and non-emissive displays, What do you mean by emissive and...

What do you mean by emissive and non-emissive displays?  The emissive display changes electrical energy into light energy. The plasma panels, thin film electro-luminescent disp

Explain difference between impact and non-impact printers, What is the diff...

What is the difference between impact and non-impact printers?  Impact printer press produced character faces against an inked ribbon on to the paper. A line printer and dot-ma

Cases of the sutherland hodgman polygon clipping algorithm, Cases of the Su...

Cases of the Sutherland Hodgman Polygon Clipping Algorithm In order to clip polygon edges against a window edge we move from vertex V i to the subsequent vertexV i+1 and cho

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd