Cases of the sutherland hodgman polygon clipping algorithm, Computer Graphics

Assignment Help:

Cases of the Sutherland Hodgman Polygon Clipping Algorithm

In order to clip polygon edges against a window edge we move from vertex Vi to the subsequent vertexVi+1 and choose the output vertex as per to four simple tests or rules or cases listed here in below:

Table: Cases of the Sutherland-Hodgman Polygon Clipping Algorithm

Case

Vi

Vi+1

Output Vertex

A

Inside window)

Inside

Vi+1

B

Inside

Outside

V'i   i.e  intersection of polygon and window edge

C

Outside

Outside

None

D

Outside

Inside

V'I  ; Vi+1

Conversely, the 4 possible Tests listed above to clip any polygon conditions are as mentioned here:

1) If both Input vertices are within the window boundary then only second vertex is added to output vertex list.

2) If first vertex is within the window boundary and the 2nd vertex is outside then, merely the intersection edge along with boundary is added to output vertex.

3) If both Input vertices are outside the window boundary then nothing is added to the output list.

4) If the first vertex is outside the window and the 2nd vertex is within window, then both the intersection points of the polygon edge along with window boundary and second vertex are added to output vertex list.

Here, we can utilize the rules cited above to clip a polygon properly. The polygon should be tested against each edge of the clip rectangle; new edges should be added and existing edges must be discarded, retained or divided. In fact this algorithm decomposes the problem of polygon clipping against a clip window in the same sub-problem where a sub-problem is to clip all polygon edges that is pair of vertices in succession against a particular infinite clip edge. The output is a set of clipped edges or pair of vertices which fall in the visible side along w.r.t. clip edge. Such set of clipped edges or output vertices are taken as input for the subsequent sub-problem of clip against the second window edge. Hence, identifying the output of the earlier sub-problem as the input, all of the sub-problems are solved in sequence, at last yielding the vertices which fall on or inside the window boundary. These vertices linked in order forms, the shape of the clipped polygon.


Related Discussions:- Cases of the sutherland hodgman polygon clipping algorithm

Flat panel, help me discuss about flat panel with respect to emissive and n...

help me discuss about flat panel with respect to emissive and non emissive display

Principle vanishing point - perspective projections, Principle Vanishing po...

Principle Vanishing point - Perspective Projections Assume that line 1 and l2 be two straight lines parallel to each other that are also parallel to x-axis. If the projection

Rotation about an arbitrary axis, Rotation about an arbitrary axis Rota...

Rotation about an arbitrary axis Rotation about an arbitrary axis is a composition of several rotations and translation operations. What you need to do is the following:  a)

Consider shiny surface with diffused reflection coefficient, Consider a Shi...

Consider a Shiny Surface Along With Diffused Reflection coefficient Consider a shiny surface along with diffused reflection coefficient of 0.8 and ambient reflection coeffici

Reflection, examples and equation of reflection

examples and equation of reflection

Advantage of initiating the matrix form of translation, Normal 0 ...

Normal 0 false false false EN-IN X-NONE X-NONE MicrosoftInternetExplorer4

Stochastic animation - computer animation, Stochastic Animation - Computer ...

Stochastic Animation - Computer Animation This utilizes stochastic processes that are a stochastic process can be identified as a random function. Such randomness could be in

What is vanishing point and view reference point, What is vanishing point a...

What is vanishing point and view reference point? The perspective projections of any set of parallel lines that are not parallel to the projection plane converge to appoint cal

Printing press discovered in 16th century, Printing Press discovered in 16t...

Printing Press discovered in 16th century: Books provided more role models & multiple perspectives. Exposure to books demanded that learners employ critical thinking to r

Whether cavalier projection is a parallel projection, State whether the fol...

State whether the following statements are true or false. Give reasons/examples to justify your answer.  a)  Cavalier projection is a parallel projection. b)  Angles are not

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd