Illustration of a clipping window - raster graphics, Computer Graphics

Assignment Help:

Illustration of a Clipping window ABCD is placed as follows:

A (100, 10), B (160, 10, C (160, 40), D (100, 40)

By using Sutherland-Cohen clipping algorithm determine the visible portion of the line segments i.e. EF, GH and P1P2. E (50, 0), F (70, 80), G (120, 20), H (140, 80), P1 (120, 5), P2(180, 30).

2065_Illustration of a Clipping window - Raster Graphics.png

Figure: Example of Cohen Sutherland Line Clipping

At first identifying the line P1P2

INPUT: P1(120, 5),   P2(180, 30)

xL = 100,   xR = 160,    yB = 10,    yT = 40

x1  > xL then bit 1 of code -P1 = 0 C1 left = 0

x1  < xR then bit 2 of code -P1 = 0 C1 right = 0

y1 < yB then bit 3 of code -P1 = 1 C1 bottom = 1

 y1  < yT then bit 4 of code -P1 = 0 C1 top = 0

code -P1 = 0100,

x2  > xL then bit 1 of code -P1 = 0 C2 left = 0

x2  > xR  then bit 2 of code -P1 = 1 C2 right = 1

 y2  > y B then bit 3 of code -P1 = 0 C2 bottom = 0

y2  < yT then bit 4 of code -P1 = 0 C2 top = 0

 code -P2 = 0010.

Both code -P1 <> 0 and code -P2 <> 0

then P1P2 not totally visible

code -P1 AND code -P2 = 0000

therefore (code -P1 AND code -P2 = 0)

then line is not fully invisible.

As code -P <> 0

for  i = 1

{

C1 left (= 0) <> 1 then nothing is done. i = i + 1 = 2

}

code -P1 <> 0 and code -P2 <> 0

then P1P2 not totally visible.

code -P1 AND code -P2 = 0000

therefore (code -P1 AND code -P2 = 0)

then line is not fully invisible.

 for   i = 2

     {

C1 right (= 0) <> 1 then nothing is to be done. i = i + 1 = 2 + 1 = 3

}

code -P1 <> 0 and code -P2 <> 0 then P1P2 not totally visible.

code -P1 AND code -P2 = 0000

therefore, (code -P1 AND code -P2 = 0)

then the line is not fully invisible.

 for   i = 3

{

 C1 bottom = 1 then find intersection of P1P2 with bottom edge yB = 10

xB = (180-120)(10-5)/(30-5) + 120

=132

then P1 = (132,10)

 x1  > xL then bit 1 of code -P1 = 0   C1 left = 0

x1  < xR then bit 2 of code -P1 = 0   C1 right = 0

y1  = yB then bit 3 of code -P1 = 0   C1 bottom = 0

y1  < yT then bit 4 of code -P1 = 0   C1 top = 0

code -P1 = 0000

i = i + 1 = 3 + 1 = 4

}

code -P1 <> 0 but code -P2 <> 0

then P1P2 not totally visible.

code -P1 AND code -P2 = 0000

therefore, (code -P1 AND code -P2 = 0)

then line is not fully invisible.

As code -P1 = 0

Swap P1 and P2 along with the respective flags

P1 = (180, 30) P2 = (132, 10) code -P1 = 0010 code -P2 = 0000

C1 left = 0                         C2 left = 0

C1 right = 1                       C2 right = 0

C1 bottom = 0                  C2 bottom = 0

C1 top = 0                         C2 top = 0

Reset i = 1

for i = 1

{

C1 left (= 0) <> 1 then nothing is to be done. i = i + 1 = 1 + 1 = 2

}

code -P1 <> 0, and code -P2 <> 0

then P1P2 is not totally visible.

code -P1 AND code -P2 = 0000

therefore, (code -P1 AND code -P2 = 0)

then line is not fully invisible.

 for i = 2

{

 C1 right   = 1 then find out intersection of P1P2 with right edge xR = 160

yR = (30 - 5)(160 - 120)/(180 - 120) + 5

= 21.667

= 22 then P1 = (160, 22)

 x1  > xL then bit 1 of code -P1 = 0   C1 left = 0

x1  = xR then bit 2 of code -P1 = 0   C1 right = 0

y1  > yB then bit 3 of code -P1 = 0   C1 bottom = 0

y1  < yT then bit 4 of code -P1 = 0   C1 top = 0

 code -P1 = 0000, i = i + 1 = 2 + 1 = 3

}

As both code -P1 = 0 and code -P2 = 0 then the line segment P1P2 is completely visible.

Consequently, the visible portion of input line P1P2 is P'1P'2 where, P1 = (160, 22) and

P2 = (132, 10).

For the line EF

1)      The endpoint codes are allocated code:

code - E → 0101

code - F → 1001

2) Flags are allocated for the two endpoints:

Eleft = 1 (as x coordinate of E is less than xL)

Eright = 0,  Etop = 0 and Ebottom = 1

As the same,

Fleft = 1,  Fright = 0,  Ftop = 1 and Fbottom = 0

3) Because codes of E and F are both not equivalent to zero the line is not wholly visible.

4) Logical intersection of codes of E and F is not equivalent to zero. Consequently, we may avoid EF line and declare it as wholly invisible.

Identifying the line GH:

a) The endpoint codes are allocated:

code - G → 0000 and

code - H → 1000

b)   Flags are allocated for the two endpoints:

Gleft = 0,  Gright = 0,  Gtop = 0 and Gbottom = 0.

As the same,

Hleft = 0,  Hright = 0,  Htop = 1 and  Hbottom = 0.

c) Because, codes of G and H are both not equivalent to zero according to the line is not totally visible.

d)   Logical intersection of codes of G and H is equivalent to zero consequently we cannot specify it as completely invisible.

f)   Because, code - G = 0, Swap G and H with their flags and set i = 1

Implying   Gleft = 0,  Gright = 0,  Gtop = 1 and  Gbottom = 0.

Hleft = 0,  Hright = 0,  Htop = 0 and  Hbottom = 0.

The same as G → 1000 and H → 0000

6) Because, code - G <> 0 then

for i = 1,

{since Gleft = 0

i = i + 1 = 2

go to 3

}

The conditions 3 and 4 don't hold and so we can't declare line GH as completely visible or invisible.

for i = 2, {since Gright = 0

i = i + 1 = 3

go to 3

}

The conditions 3 and 4 don't hold and so we can't declare line GH as completely visible or invisible.

for i = 3, {since Gbottom = 0

i = i + 1 = 4

go to 3

}

The conditions 3 and 4 don't hold and so we can't declare line GH as completely visible or invisible.

for i = 4, {since Gtop = 1

Intersection along with top edge, as P(x, y) is found as given below:

Any of line passing via the points G, H and a point P(x, y) is given via y - 20 = {(180 - 20) /(140 - 120)}(x - 120) or, y - 20 = 3x - 360 or, y - 30 = -340

Because, the y coordinate of every point on line CD is 40, consequently we put y = 40 for the point of intersection P(x, y) of line GH along with edge CD.

40 - 3x = -340 or, - 3x = - 380

Or else x = 380/3 = 126.66 ≈ 127

Consequently, the point of intersection is P (127, 40). We allocate code to it.

Because, the point lays on edge of the rectangle hence the code allocated to it is 0000. Here, we allocate G = (127, 40); i = 4 + 1 = 5. State 3 and 4 are again checked. Because, codes G and H are both are equivalent to 0, hence, the line among H(120, 20) and G(127, 40) is wholly visible.


Related Discussions:- Illustration of a clipping window - raster graphics

Dda or digital differential analyzer algorithm, DDA or Digital Differential...

DDA or Digital Differential Analyzer Algorithm - Line generation algorithms From the above discussion we get that a Line drawing is accomplished through calculating intermedi

Digital audio comprises audio signals, Digital audio comprises audio signal...

Digital audio comprises audio signals stored in a digital format. Particularly, the term encompasses the subsequent: 1)   Audio conversion: 1.   Analogue to digital conversi

Uses for gif and jpeg files, Uses for GIF and JPEG Files: Microsoft I...

Uses for GIF and JPEG Files: Microsoft Internet Explorer, Netscape Navigator and most the other browsers maintain both JPEG and GIF graphics. Theoretically, you could util

Write a code to generate a composite matrix, Write a code to generate a com...

Write a code to generate a composite matrix for general 3D rotation matrix.  Test your code and rotate continuously a cube about an axis.

De casteljau algorithm - 2d clipping algorithms, De Casteljau Algorithm ...

De Casteljau Algorithm For computation of Bézier curves an iterative algorithm known as de Casteljau algorithm is used.  The algorithm uses repeated linear interpolation.

Advantage and disadvantage of plasma panel-graphics hardware, Advantage and...

Advantage and Disadvantage of Plasma panel - Graphics Hardware Advantage 1. Slim design as Wall mountable 2. Larger than LCD screens Disadvantage

Dda, differentiate between dda and bresenhams line algorithm

differentiate between dda and bresenhams line algorithm

Local illumination model - polygon rendering, Local Illumination Model - Po...

Local Illumination Model - Polygon Rendering In this only light that is directly reflected by a light source through a surface to our eyes is observed. No explanation is taken

Prepare a cylinder, Question: (a) Write a short note on the dot syntax...

Question: (a) Write a short note on the dot syntax as used in actionScript. (b) A data type describes the kind of information a variable or ActionScript element can hold.

Polygon representation methods - modeling and rendering, Polygon Representa...

Polygon Representation Methods - Modeling and Rendering Any scene to be created by computer graphics may include a variety of objects, a few of them natural and manmade. Hence

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd