Find out the joint distribution, Civil Engineering

Assignment Help:

Find out the joint distribution:

Let XI and X2 be two independent random variables each distributed uniformly in the interval [ 0, a ], where a > 0 is a constant. Find out the joint distribution of

Yl = Xl + X2 and Y2 = X1 - X2.

Instead, in vector notation, what is the distribution of Y = XA.

where

x = (X1,X2),Y= (Y1,Y2), A = 584_Find out the joint distribution.png? Find also the marginal distributions of Y1 and Y2. ?

Solution:

The joint pdf of X is

fx(x) = 1/a2, (x1,x2)? R(x)

= 0 otherwise.

Where

R(x) = {(x1,x2):0 ≤ x1 ≤ a, 0 ≤  x2 ≤ a}

The Jacobian of the transformation is

347_Find out the joint distribution1.png

Hence the pdf of Y is

fy(y) = 1/2a2, (y1,y2)? R(y)

= 0 otherwise.

where R ( y ) is the transformed region R ( x ) under the transformation Y = XA. The range of variation of Yl is clearly [ 0,2a ] and that of Y2 is [ - a, + a ]. However Yl and Y2 are not independent.

Since the inverse transformation is

X1= ½ (Y1 + Y2), X2 = ½ (Y1 - Y2) and 0≤ x1, x2 ≤ a,

the region R ( y ) is given by

R(y) = {( Y1 + Y2) : 0 ≤ Y1 + Y2 ≤ 2a, 0≤ Y1 - Y2 ≤2a},

The Relation between R ( x ) and R ( y ) is illustrated in Figure 2.

1951_Find out the joint distribution2.png

Figure: Relation between R ( x ) and R ( y ).

Note that the variables xl and x2 are independent and the region R ( x ) is such that for Xl - xl, the variation X2 does not depend on xl, but the region R ( Y ) is not of that type and the transformed variables Yl and Y2 are not independent.

The variable Yl varies in the interval [ 0, 2a]and for a fixed yl, if 0≤ y1≤ a, then y2 takes on values -y1≤y2≤ y1, while, if a< y1≤ 2a then y2 varies in the interval

-(2a-y1) <.y2 ≤ (2a - y1)

Integrating fy ( y ) with respect to y2, the marginal pdf of y2 is obtained as follows

fY1(y1) = 2283_Find out the joint distribution3.png 1/2a2 dy2 = y1/a2, for 0 ≤ y1 ≤ a

462_Find out the joint distribution4.png 1/2a2 dy2  = 2a-y1/a2, for a< y1 ≤ 2a

= 0 otherwise.

In a similar manner, we note that for a given Y2, if -a ≤ y2 ≤ 0 then

-y2 ≤ y1 ≤ 2a-y2, and if 0≤ y2 ≤ a then y2 ≤ y1 ≤ 2a - y2

Hence,

fY2(y2) = 119_Find out the joint distribution5.png1/2a2 dy1 = a+y2/a2, -a ≤ y2 ≤ 0

960_Find out the joint distribution6.png 1/2a2 dy1 = a-y2/a2 , 0< y2 ≤ a

= 0 otherwise.

Remarks:

The forms of pdf the marginal distributions In Example 5 are shown in Figure 3. Due to their triangular shape of pdf's, the distributions are called triangular distributions.

2222_Find out the joint distribution7.png

 

Figure: The forms of the marginal distributions of YI and Y2


Related Discussions:- Find out the joint distribution

Explain the typical wastewater characteristics, Explain the Typical Wastewa...

Explain the Typical Wastewater Characteristics? Total Suspended Solids = 100 - 350 mg/L (200 mg/l is the typical value)    BOD 5 = 100-300 mg/L (200 mg/L is the typical val

Calculate the horizontal distance, Calculate the Horizontal Distance A ...

Calculate the Horizontal Distance A surveyor's total station measured slope distance near station 3245+26.35 is recorded as 437.380-m with a zenith angle of 118º 48' 07" and a

Explain the erosion and sedimentation, Explain the Erosion and Sedimentatio...

Explain the Erosion and Sedimentation Erosion: Removal of soil or other channel material caused by the rapid movement of water over the channel surface. The removed material

Pump selection, How do you determine pipe size and select a pump for 100 li...

How do you determine pipe size and select a pump for 100 liter per second flow?

Explain hydrology and evaporation, Explain Hydrology and Evaporation Hy...

Explain Hydrology and Evaporation Hydrology: Study of the circulation of water in nature.    Evaporation: Water in the liquid state transforms to vapor. Evaporation occurs f

Lintel, what is the classification of lintel

what is the classification of lintel

Torsion, assumptions made in the simple torsion theory

assumptions made in the simple torsion theory

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd