Find out the joint distribution, Civil Engineering

Assignment Help:

Find out the joint distribution:

Let XI and X2 be two independent random variables each distributed uniformly in the interval [ 0, a ], where a > 0 is a constant. Find out the joint distribution of

Yl = Xl + X2 and Y2 = X1 - X2.

Instead, in vector notation, what is the distribution of Y = XA.

where

x = (X1,X2),Y= (Y1,Y2), A = 584_Find out the joint distribution.png? Find also the marginal distributions of Y1 and Y2. ?

Solution:

The joint pdf of X is

fx(x) = 1/a2, (x1,x2)? R(x)

= 0 otherwise.

Where

R(x) = {(x1,x2):0 ≤ x1 ≤ a, 0 ≤  x2 ≤ a}

The Jacobian of the transformation is

347_Find out the joint distribution1.png

Hence the pdf of Y is

fy(y) = 1/2a2, (y1,y2)? R(y)

= 0 otherwise.

where R ( y ) is the transformed region R ( x ) under the transformation Y = XA. The range of variation of Yl is clearly [ 0,2a ] and that of Y2 is [ - a, + a ]. However Yl and Y2 are not independent.

Since the inverse transformation is

X1= ½ (Y1 + Y2), X2 = ½ (Y1 - Y2) and 0≤ x1, x2 ≤ a,

the region R ( y ) is given by

R(y) = {( Y1 + Y2) : 0 ≤ Y1 + Y2 ≤ 2a, 0≤ Y1 - Y2 ≤2a},

The Relation between R ( x ) and R ( y ) is illustrated in Figure 2.

1951_Find out the joint distribution2.png

Figure: Relation between R ( x ) and R ( y ).

Note that the variables xl and x2 are independent and the region R ( x ) is such that for Xl - xl, the variation X2 does not depend on xl, but the region R ( Y ) is not of that type and the transformed variables Yl and Y2 are not independent.

The variable Yl varies in the interval [ 0, 2a]and for a fixed yl, if 0≤ y1≤ a, then y2 takes on values -y1≤y2≤ y1, while, if a< y1≤ 2a then y2 varies in the interval

-(2a-y1) <.y2 ≤ (2a - y1)

Integrating fy ( y ) with respect to y2, the marginal pdf of y2 is obtained as follows

fY1(y1) = 2283_Find out the joint distribution3.png 1/2a2 dy2 = y1/a2, for 0 ≤ y1 ≤ a

462_Find out the joint distribution4.png 1/2a2 dy2  = 2a-y1/a2, for a< y1 ≤ 2a

= 0 otherwise.

In a similar manner, we note that for a given Y2, if -a ≤ y2 ≤ 0 then

-y2 ≤ y1 ≤ 2a-y2, and if 0≤ y2 ≤ a then y2 ≤ y1 ≤ 2a - y2

Hence,

fY2(y2) = 119_Find out the joint distribution5.png1/2a2 dy1 = a+y2/a2, -a ≤ y2 ≤ 0

960_Find out the joint distribution6.png 1/2a2 dy1 = a-y2/a2 , 0< y2 ≤ a

= 0 otherwise.

Remarks:

The forms of pdf the marginal distributions In Example 5 are shown in Figure 3. Due to their triangular shape of pdf's, the distributions are called triangular distributions.

2222_Find out the joint distribution7.png

 

Figure: The forms of the marginal distributions of YI and Y2


Related Discussions:- Find out the joint distribution

Functions of a column in a building, What are the functions of a column in ...

What are the functions of a column in a building? Ans) A column is used to handle the weight of the roof and/or the upper floors. Now days, many columns are used for decorative

Types of loads and resulting stresses, • Applied loads result in internal f...

• Applied loads result in internal forces consisting of a shear force (from the shear stress distribution) and a bending moment (from the normal stress distribution) • Bending s

Purpose of reinforcement in concrete roads, Q. Purpose of reinforcement in ...

Q. Purpose of reinforcement in concrete roads? The major purposes of reinforcement in concrete roads are: (i)  To control the development and pattern of cracks in concrete p

Wmm, why use wmm upon gsb can be laid dbm directly upon gsb

why use wmm upon gsb can be laid dbm directly upon gsb

Define seismic isolation bearings - bridge bearing, Define Seismic Isolati...

Define Seismic Isolation Bearings  - Bridge Bearing? Many bridges had been built before the proper seismic design specifications were known to us. These bridges require strengt

What is the required bracing location for the beam, A contractor has select...

A contractor has selected a W14x74 simply supported beam for a high rise construction project.  The span length for the provided beam is set at 30 feet.  The maximum factored appli

Define dupuit equations for unconfined aquifers, Define Dupuit Equations fo...

Define Dupuit Equations for Unconfined Aquifers Using natural log: Q = ΠK((h 2 ) 2 - (h 1 ) 2 )/ln(r 2 /r 1 )     Using log 10 : Q = K((h 2 ) 2 - (h 1 ) 2 )/((1,055)l

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd