Explain digital control systems, Electrical Engineering

Assignment Help:

Q. Explain Digital control systems?

Significant progress has been made in recent years in discrete-data and digital control systems because of the advancesmade in digital computers andmicrocomputers, as well as the advantages found in working with digital signals. Discrete-data and digital control systems differ from the continuous-data or analog systems in that the signals in one or more parts of these systems are in the form of either a pulse train or a numerical (digital) code. The terms, sampled-data systems, discrete-data systems, discrete-time systems, and digital systems have been loosely used in the control literature.However, sampled-data systems usually refer to a general class of systems whose signals are in the formof pulse data; sampled data refers to signals that are pulse-amplitude modulated, i.e., trains of pulses with signal information carried by the amplitudes. Digital control systems refers to the use of a digital computer or controller in the system; digital data usually refers to signals that are generated by digital computers or digital transducers and are thus in some kind of coded form. A practical system such as an industrial process control is generally of such complexity that it contains analog and sampled as well as digital data. Hence the term discrete-data systems is used in a broad sense to describe all systems in which some form of digital or sampled signals occur. When a microprocessor receives and outputs digital data, the system then becomes a typical discrete-data or digital control system.

Figure (a) illustrates the basic elements of a typical closed-loop control system with sampled data; Figure (b) shows the continuous-data input e(t) to the sampler, whereas Figure (c) depicts the discrete-data output e* (t) of the sampler. A continuous input signal r(t) is applied to the system. The continuous error signal is sampled by a sampling device, the sampler, and the output of the sampler is a sequence of pulses. The pulse train may be periodic or aperiodic, with no information transmitted between two consecutive pulses. The sampler in the present case is assumed to have a uniform sampling rate, even though the rate may not be uniform in some other cases. The magnitudes of the pulses at the sampling instants represent the values of the input signal e(t) at the corresponding instants. Sampling schemes, in general, may have many variations: periodic, cyclic-rate, multirate, random, and pulse-width modulated

409_Explain Digital control systems.png

samplings. Incorporating sampling into a control system has several advantages, including that of time sharing of expensive equipment among various control channels.


Related Discussions:- Explain digital control systems

Silicon Photonics, How does a Mach-Zehnder Modulator work in Silicon?

How does a Mach-Zehnder Modulator work in Silicon?

Determine the current in the exciting winding, Consider the magnetic circui...

Consider the magnetic circuit of Figure with an air gap, while neglecting leakage flux. Correct for fringing by adding the length of the air gap l g = 0.1 mm to each of the other

What are the cautions to be taken, What are the cautions to be taken before...

What are the cautions to be taken before starting work on electrical installations? Ans: Before starting any electrical works on installations disconnect the power supply to

Comperators, How to build a 6 bit comparator?

How to build a 6 bit comparator?

Power in balanced three-phase circuits, Power in Balanced Three-Phase Circu...

Power in Balanced Three-Phase Circuits The total power delivered by a three-phase source, or consumed by a three-phase load, is found simply by adding the power in each of the

Explain linear versus nonlinear control systems, Q. Explain Linear versus n...

Q. Explain Linear versus nonlinear control systems? Linear feedback control systems are idealized models that are conceived by the analyst for the sake of simplicity of analysi

Full wave rectifiers, how to determine the peak inverse voltage across idea...

how to determine the peak inverse voltage across ideal diodes

Calculate the generator emf , Q.  The armature of 6 -pole dc generator has...

Q.  The armature of 6 -pole dc generator has a wave winding containing 664 conductors. Calculate the generator emf when flux per pole is 0.06 weber and the speed is 250 rpm. At wh

Classify the conducting materials, Classify the conducting materials. ...

Classify the conducting materials. Conducting materials are classified by low resistivity materials and high resistivity materials. Low resistivity materials: The conduct

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd