Example of mixing problems, Mathematics

Assignment Help:

A 1500 gallon tank primarily holds 600 gallons of water along with 5 lbs of salt dissolved into it. Water enters the tank at a rate of 9 gal/hr and the water entering the tank has a salt concentration of 1/5 (1 + cos (t)) lbs/gal. If a well mixed solution goes away the tank at a rate of 6 gal/hr, how much salt is in the tank while it overflows?

Solution

Firstly, let's address the "well mixed solution" bit. It is the assumption that was mentioned earlier. We are going to suppose that the instant the water enters the tank this somehow immediately disperses evenly throughout the tank to provide a uniform concentration of salt into the tank at every point.  Again, it will evidently not be the case in actuality, but it will permit us to do the problem.

Now, to set up the Initial Value Problem that we'll require to solve to get Q(t) we'll require the flow rate of the water entering as we've got that the concentration of the salt into the water entering when we've got that, the flow rate of the water leaving and the concentration of the salt into the water exiting but we don't have this yet.

Thus, we first require determining the concentration of the salt in the water exiting the tank. As we are assuming a uniform concentration of salt in the tank the concentration at some point into the tank and thus in the water exiting is specified by,

Concentration = Amount of salt in the tank at any time, t/Volume of water in the tank at any time, t

 The amount at any time t is simple it's just Q(t). The volume is also pretty simple. We begin with 600 gallons and each hour 9 gallons enters and 6 gallons leave. Thus, if we use t in hours, each hour 3 gallons enters the tank, or at any time t there as 600 + 3t gallons of water into the tank.

Thus the Initial Value Problem for this condition is:

Q'(t) = 9 ((1/5)(1 + cos(t))) - 6 (Q(t)/(600 + 3t)),                   Q(0) = 5

Q'(t) = 9/5 ( 1 + cos (t)) - (2Q(t))/(200 + t),                           Q(0) = 5

It is a linear differential equation and this isn't too hard to solve hopefully. We will demonstrate most of the details, although leave the explanation of the solution process out.  If you require a refresher on solving linear first order differential equations go back and see that section.

Q'(t) + ((2Q(t))/(200 + t)) = 9/5(1 + cos(t))

µ(t) =  e∫(2/(200 + t)) dt = e2In(200 + t)) =(200 + t)2

∫((200 + t)2 Q(t))' dt = ∫(9/5(200+ t)2 (1 + cos(t))dt

 (200 + t)2 Q(t) = 9/5((1/3 (200 + t)3) + ((200 + t)2 sin(t)) + (2 (200 + t) cos(t)) - (2 sin(t))) + c

Q(t) = 9/5((1/3 (200 + t)) + sin(t) + ((2cos (t))/(200 + t)) - ((2sin(t))/(200 + t)2)) +(c/(200 + t)2)

Thus, here's the general solution. Here, apply the initial condition to find the value of the constant, c.

5 = Q(0) =  9/5((1/3 (200) + (2/200)) + c/(200)2

C= - 4600720

Hence, the amount of salt into the tank at any time t as:

Q(t) = 9/5((1/3 (200 + t)) + sin(t) + ((2cos (t))/(200 + t)) - ((2sin(t))/(200 + t)2))-(4600720/(200 + t)2)

Now, the tank will overflow at t = 300 hrs. The amount of salt in the tank at that time is.

Q (300) = 279.797 lbs

There is a graph of the salt into the tank before it overflows.

1351_Example of Mixing Problems.png

Remember that the complete graph must have small oscillations in it as you can notice in the range from 200 to 250. The scale of the oscillations though was small adequate that the program used to produce the image had trouble demonstrating all of them.

The work was a little messy along with that one, but they will frequently be that way so don't get excited regarding it. This first illustration also assumed that nothing would change during the life of the process. That, of course will generally not be the case.


Related Discussions:- Example of mixing problems

Find the values of a and b, The midpoint of the line joining (2a, 4) and (...

The midpoint of the line joining (2a, 4) and (-2, 3b) is (1, 2a +1).Find the values of a & b. (Ans: a = 2, b = 2) Ans :   A(2a, 4)           P(1, 2a + 1)                 B(-2,

How will you use the Gantt chart for solving the sequencing, How will you u...

How will you use the Gantt chart for solving the sequencing problem?

Explain angle pairs, Explain angle pairs ? Adjacent angle pairs Two an...

Explain angle pairs ? Adjacent angle pairs Two angles are adjacent if they: 1. Have the same vertex. 2. Share a common side. 3. Have no interior points in common. Definit

Calculate the quarterly premium of a pension policy, You plan to retire whe...

You plan to retire when you are 65th years old.  You are now 25 years old.  You plan to buy a pension annuity that will pay you $100,000 per year starting one year after you turn 6

Calculus with matrices, Calculus with Matrices There actually isn't a ...

Calculus with Matrices There actually isn't a whole lot to it other than to just ensure that we can deal along with calculus with matrices. Firstly, to this point we've onl

Real constant and difference equation, Derive for the filter from z=a and p...

Derive for the filter from z=a and poles at z=b andz=c, where a, b, c are the real constants the corresponding difference equation. For what values of parameters a, b, and c the fi

Arithmetic progression, the radii of circular base of right circular cylind...

the radii of circular base of right circular cylinder and cone are in the ratio of 3:4 and their height are in the ratio of the 2:3 what is the ratio of their volume?

Example on abels theorem, Without solving, find out the Wronskian of two so...

Without solving, find out the Wronskian of two solutions to the subsequent differential equation. t 4 y'' - 2t 3 y' - t 8 y = 0 Solution : First thing that we want to d

Determine the height of building, A 20-foot light post shows a shadow 25 fe...

A 20-foot light post shows a shadow 25 feet long. At the similar time, a building nearby casts a shadow 50 feet long. determine the height of building? a. 40 ft b. 62.5 ft

What is the total number of pounds they bought if the total, The student co...

The student council bought two various kinds of candy for the school fair. They purchased 40 pounds of candy at $2.15 per pound and x pounds at $1.90 per pound. What is the total n

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd