Example of mixing problems, Mathematics

Assignment Help:

A 1500 gallon tank primarily holds 600 gallons of water along with 5 lbs of salt dissolved into it. Water enters the tank at a rate of 9 gal/hr and the water entering the tank has a salt concentration of 1/5 (1 + cos (t)) lbs/gal. If a well mixed solution goes away the tank at a rate of 6 gal/hr, how much salt is in the tank while it overflows?

Solution

Firstly, let's address the "well mixed solution" bit. It is the assumption that was mentioned earlier. We are going to suppose that the instant the water enters the tank this somehow immediately disperses evenly throughout the tank to provide a uniform concentration of salt into the tank at every point.  Again, it will evidently not be the case in actuality, but it will permit us to do the problem.

Now, to set up the Initial Value Problem that we'll require to solve to get Q(t) we'll require the flow rate of the water entering as we've got that the concentration of the salt into the water entering when we've got that, the flow rate of the water leaving and the concentration of the salt into the water exiting but we don't have this yet.

Thus, we first require determining the concentration of the salt in the water exiting the tank. As we are assuming a uniform concentration of salt in the tank the concentration at some point into the tank and thus in the water exiting is specified by,

Concentration = Amount of salt in the tank at any time, t/Volume of water in the tank at any time, t

 The amount at any time t is simple it's just Q(t). The volume is also pretty simple. We begin with 600 gallons and each hour 9 gallons enters and 6 gallons leave. Thus, if we use t in hours, each hour 3 gallons enters the tank, or at any time t there as 600 + 3t gallons of water into the tank.

Thus the Initial Value Problem for this condition is:

Q'(t) = 9 ((1/5)(1 + cos(t))) - 6 (Q(t)/(600 + 3t)),                   Q(0) = 5

Q'(t) = 9/5 ( 1 + cos (t)) - (2Q(t))/(200 + t),                           Q(0) = 5

It is a linear differential equation and this isn't too hard to solve hopefully. We will demonstrate most of the details, although leave the explanation of the solution process out.  If you require a refresher on solving linear first order differential equations go back and see that section.

Q'(t) + ((2Q(t))/(200 + t)) = 9/5(1 + cos(t))

µ(t) =  e∫(2/(200 + t)) dt = e2In(200 + t)) =(200 + t)2

∫((200 + t)2 Q(t))' dt = ∫(9/5(200+ t)2 (1 + cos(t))dt

 (200 + t)2 Q(t) = 9/5((1/3 (200 + t)3) + ((200 + t)2 sin(t)) + (2 (200 + t) cos(t)) - (2 sin(t))) + c

Q(t) = 9/5((1/3 (200 + t)) + sin(t) + ((2cos (t))/(200 + t)) - ((2sin(t))/(200 + t)2)) +(c/(200 + t)2)

Thus, here's the general solution. Here, apply the initial condition to find the value of the constant, c.

5 = Q(0) =  9/5((1/3 (200) + (2/200)) + c/(200)2

C= - 4600720

Hence, the amount of salt into the tank at any time t as:

Q(t) = 9/5((1/3 (200 + t)) + sin(t) + ((2cos (t))/(200 + t)) - ((2sin(t))/(200 + t)2))-(4600720/(200 + t)2)

Now, the tank will overflow at t = 300 hrs. The amount of salt in the tank at that time is.

Q (300) = 279.797 lbs

There is a graph of the salt into the tank before it overflows.

1351_Example of Mixing Problems.png

Remember that the complete graph must have small oscillations in it as you can notice in the range from 200 to 250. The scale of the oscillations though was small adequate that the program used to produce the image had trouble demonstrating all of them.

The work was a little messy along with that one, but they will frequently be that way so don't get excited regarding it. This first illustration also assumed that nothing would change during the life of the process. That, of course will generally not be the case.


Related Discussions:- Example of mixing problems

Geometry , solve for x and y 2x+3y=12 and 30x+11y=112

solve for x and y 2x+3y=12 and 30x+11y=112

Derivatives of inverse trig function, Derivatives of Inverse Trig Functions...

Derivatives of Inverse Trig Functions : Now, we will look at the derivatives of the inverse trig functions. To derive the derivatives of inverse trig functions we'll required t

Determining Proportionality, Assume Jim had executed 15 "Splits" before his...

Assume Jim had executed 15 "Splits" before his last split of 20 seconds. If his eventual time in the road race is 4:05, what was the average time for one of his earlier splits?

Series, if abebe murepay a $100000interse free loan by making annuallypaym...

if abebe murepay a $100000interse free loan by making annuallypayment of 1st

Algebra, find the value of A and B if the following polynomials are perfect...

find the value of A and B if the following polynomials are perfect square:

MENSURATION, HOW TO FIND THE HEIGHT OF A CYLINDER I NEED IT FOR ASSIGNMENT ...

HOW TO FIND THE HEIGHT OF A CYLINDER I NEED IT FOR ASSIGNMENT TO BE SUBMITTED BY 8;00 AM

Distinct eigenvalues, It's now time to do solving systems of differential e...

It's now time to do solving systems of differential equations. We've noticed that solutions to the system, x?' = A x? It will be the form of, x? = ?h e l t Here l and

What is the maximum volume of rectangular box, 1. A rectangular piece of ca...

1. A rectangular piece of cardboard measuring 26 inches by 42 inches is to be made into a box with an open top by cutting equal size squares from each comer and folding up the side

Determine the number of combinations, 3 items x, y and z will have 6 differ...

3 items x, y and z will have 6 different permutations however only one combination. The given formular is generally used to determine the number of combinations in a described situ

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd