Wavy curve method, Mathematics

Assignment Help:

In order to compute the inequalities of the form

428_22.png

 

where n1, n2, ....... , n k , m1, m2, ....... , mp are natural and real numbers and a1, a2, ... , ak, b1, b2, ..., bp are any real number such that ai ≠ bj where i = 1, 2, 3, ....k and j = 1, 2, 3, ....p.

 

Method:

Step - 1 First place all values of x at which either denominator or numerator is becomes zero, that denotes a1, a2,....., ak, b1, b2, ....bp in ascending order say c1, c2, c3,....... cp + k. draw them on real line

2149_22.png

Step -2  Value of x number at which numerator tends to zero could be remarked with dark circles.

Step - 3  All pints of discontinuities (x at which denominator tends to zero) could be remarked on number line with empty circles. Calculate the value of f(x) for any real number bigger than the right most checked number on the number line.

Step - 4  From right to left presented a wavy curve (beginnings above the number line in type of value of f(x) is positive in step-3 otherwise from below the number line), going thoroughly all the checked points. So that when goes through a point (exponent whose related factor is odd) intersects the number line, and when going thoroughly a point (exponent whose related factor is even) the curve doesn't cut the real line and stay on the similar side of real line.

Step - 5 The suitable intervals are selected in accordance with the sign of inequality (the function f(x) is positive wherever the curve is over the number line, it is negative if the curve is searched below the number line). Their union shows the solution of inequality

 

 

 


Related Discussions:- Wavy curve method

Working definition of function, A function is an equation for which any x w...

A function is an equation for which any x which can be plugged into the equation will yield accurately one y out of the equation. There it is. i.e. the definition of functions w

Taylor series, If f(x) is an infinitely differentiable function so the Tayl...

If f(x) is an infinitely differentiable function so the Taylor Series of f(x) about x=x 0 is, Recall that, f (0) (x) = f(x) f (n) (x) = nth derivative of f(x)

Find the maxima and minima - equal pi, 1) Find the maxima and minima of f(x...

1) Find the maxima and minima of f(x,y,z) = 2x + y -3z subject to the constraint 2x^2+y^2+2z^2=1 2) Compute the work done by the force ?eld F(x,y,z) = x^2I + y j +y k in moving

Linear programming problem, I have a linear programming problem that we are...

I have a linear programming problem that we are to work out in QM for Windows and I can''t figure out how to lay it out. Are you able to help me if I send you the problem?

Find poq of tangents drawn to the circle, In figure, O is the centre of th...

In figure, O is the centre of the Circle .AP and AQ two tangents drawn to the circle. B is a point on the tangent QA and ∠ PAB = 125 ° , Find ∠ POQ. (Ans: 125 o ) An s:

How many hours will it take for them to be 822 miles apart, Two trains leav...

Two trains leave the same city at the same time, one going east and the other going west. If one train is traveling at 65 mph and the other at 72 mph, how many hours will it take f

Laplace transforms, As we saw in the previous section computing Laplace tra...

As we saw in the previous section computing Laplace transforms directly can be quite complex. Generally we just utilize a table of transforms when actually calculating Laplace tran

Create graph showing the depth of the water , Your friends have opened an o...

Your friends have opened an ocean fishing operation that requires their fishing vessel to cross a channel, where the depth of the water (measured in metres) varies with time, and i

Continuity, give me some examples on continuity

give me some examples on continuity

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd