Theorem, from definition of derivative, Mathematics

Assignment Help:

Theorem, from Definition of Derivative

 If f(x) is differentiable at x = a then f(x) is continuous at x =a.

Proof : Since f(x) is differentiable at x = a we know,

f'(a) = lim x→a (f(x) - f(a))/(x - a)

exists. We will require this in some.

 If we next suppose that x ≠ a we can write the as given below,

f(x) - f(a) = ((f(x) - f(a))/( x -a)) (x -a)

Afterward fundamental properties of limits tells us as we have,

lim x→a (f(x) - f(a)) = lim x→a [((f(x) - f(a))/(x - a)) (x -a)]

= lim x→a (f(x) - f(a))/(x - a) lim x→a (x -a)

The primary limit on the right is only f′(a) as we considered above and the second limit is obviously zero and therefore,

lim x→a (f(x) - f(a)) = f'(a).0 = 0

So we've managed to prove as,

lim x→a (f(x) - f(a)) = 0

Although just how does this help us to x= a, prove that f(x) is continuous at x = a?

 Let's establish with the subsequent.

lim x→a (f(x)) = lim x→a [f(x) + f(a) - f(a)]

Remember that we have just added in zero upon the right side. Some rewriting and the utilize of limit properties provides,

limx→a (f(x)) = limx→a [f(a) + f(x) - f(a)]

= limx→a f(a) + limx→a [f(x) - f(a)]

Here, we only proved above that limx→a [f(x) - f(a)] = 0 and since f(a) is a constant we also know that limx→a f(a) = f(a), then it should be,

limx→a f(x) = limx→a f(a) = 0 = f(a)

Or conversely, limx→a f(x) = f(a) although it is exactly what this means for f(x) is continuous at x = a and therefore we are done.


Related Discussions:- Theorem, from definition of derivative

Evaluate numerator and denominator limit, Evaluate following limits. ...

Evaluate following limits. Solution : Let's do the first limit & in this case it sees like we will factor a z 3 out of the numerator and denominator both. Remember that

Statistics, find the number of ways 17 employees can b chosen from 327

find the number of ways 17 employees can b chosen from 327

Domain of a vector function - three dimensional space, Domain of a Vector F...

Domain of a Vector Function There is a Vector function of a single variable in R 2 and R 3 have the form, r → (t) = {f (t), g(t)} r → (t) = {f (t) , g(t), h(t)} co

Ampltude and period, find the amplitude and period of y=3 sin 2 pi x

find the amplitude and period of y=3 sin 2 pi x

Fractions, how to divide fractions?

how to divide fractions?

More optimization problems, More Optimization Problems Example   A w...

More Optimization Problems Example   A window is being built in which the bottom is rectangle and the top is a semicircle. If there framing materials is 12 meters what have

Yield volatility and graph, This question has two related parts, (a) and (b...

This question has two related parts, (a) and (b). (a) Use the daily yields in the table below to compute a daily standard deviation of yields. Next annualize the daily standard

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd