Theorem, from definition of derivative, Mathematics

Assignment Help:

Theorem, from Definition of Derivative

 If f(x) is differentiable at x = a then f(x) is continuous at x =a.

Proof : Since f(x) is differentiable at x = a we know,

f'(a) = lim x→a (f(x) - f(a))/(x - a)

exists. We will require this in some.

 If we next suppose that x ≠ a we can write the as given below,

f(x) - f(a) = ((f(x) - f(a))/( x -a)) (x -a)

Afterward fundamental properties of limits tells us as we have,

lim x→a (f(x) - f(a)) = lim x→a [((f(x) - f(a))/(x - a)) (x -a)]

= lim x→a (f(x) - f(a))/(x - a) lim x→a (x -a)

The primary limit on the right is only f′(a) as we considered above and the second limit is obviously zero and therefore,

lim x→a (f(x) - f(a)) = f'(a).0 = 0

So we've managed to prove as,

lim x→a (f(x) - f(a)) = 0

Although just how does this help us to x= a, prove that f(x) is continuous at x = a?

 Let's establish with the subsequent.

lim x→a (f(x)) = lim x→a [f(x) + f(a) - f(a)]

Remember that we have just added in zero upon the right side. Some rewriting and the utilize of limit properties provides,

limx→a (f(x)) = limx→a [f(a) + f(x) - f(a)]

= limx→a f(a) + limx→a [f(x) - f(a)]

Here, we only proved above that limx→a [f(x) - f(a)] = 0 and since f(a) is a constant we also know that limx→a f(a) = f(a), then it should be,

limx→a f(x) = limx→a f(a) = 0 = f(a)

Or conversely, limx→a f(x) = f(a) although it is exactly what this means for f(x) is continuous at x = a and therefore we are done.


Related Discussions:- Theorem, from definition of derivative

Longer- term forecasting, Longer- Term Forecasting Moving averages, ex...

Longer- Term Forecasting Moving averages, exponential smoothing and decomposition methods tend to be utilized for short to medium term forecasting. Longer term forecasting is

Find the angle of elevation, A 50-foot pole casts a shadow on the ground. ...

A 50-foot pole casts a shadow on the ground. a) Express the angle of elevation θ of the sun as a function of the length s of the shadow. (Hint you may wish to draw this firs

.fractions, what is the difference between North America''s part of the tot...

what is the difference between North America''s part of the total population and Africa''s part

Determine the probability of tossing a head, Q. Determine the probability o...

Q. Determine the probability of tossing a head? Let B represent the event of tossing a heads with the nickel in example 2. Find P(B). Solution:   S = {(H, H), (H, T), (T, H

Produt promotion, What is the structure of produt promotion?

What is the structure of produt promotion?

Brahmaguptas problem, How to solve Brahmaguptas Problem? Explain Brahmagupt...

How to solve Brahmaguptas Problem? Explain Brahmaguptas Problem solving method?

Application of statistics-human resource management, Human resource managem...

Human resource management Statistics may be utilized in efficient employ of human resources for example we may provide questionnaires to workers to find out where the manageme

QUANITATIVE METHODS, COMMENT ON QUANTITATIVE TECHNIQUES IS A SCIENTIFIC AND...

COMMENT ON QUANTITATIVE TECHNIQUES IS A SCIENTIFIC AND FOR ENHANCING CREATIVE AND JUDICIOUS CAPABILITIES OF A DECISION MAKER

Geometry, Awhat is polygonesk question #Minimum 100 words accepted#

Awhat is polygonesk question #Minimum 100 words accepted#

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd