Example of complex roots, Mathematics

Assignment Help:

Solve the subsequent IVP.

y'' - 4y' + 9y = 0, y(0) = 0, y'(0) = -8

Solution

The characteristic equation for such differential equation is. As:

 r2 - 4r + 9 = 0

 The roots of this equation are r1,2  = 2 + √(5i). So the general solution to the differential equation is as:

y(t) = c1 e2t cos (√5t)+ c2 e2t sin (√5t)

Here, you'll note that we didn't differentiate it right away as we did in the previous section. The motive for this is easy. But the differentiation is not terribly complicated this can find a little messy. Thus, first looking at the initial conditions we can notice from the first one which if we just applied it we would find the subsequent.

0 = y (0) + c1

Conversely, the first term will drop out so as to meet the first condition. It makes the solution, with its derivative as

y(t) = c2 e2t sin (√5t)

y'(t) = 2c2 e2t sin (√5t) +√5 c2 e2t cos (√5t)

A much fine derivative than if we'd complete the original solution. Here, apply the second initial condition to the derivative to find out,

-8 = y'(0) = √5 c2                   ⇒ c2 = -8/√5

The actual solution is here as:

y(t) =  -8/√5 e2t sin (√5t)


Related Discussions:- Example of complex roots

How to find x?, How can I solve x in a circle? For example.. m

How can I solve x in a circle? For example.. m

Compounding and Simple Interest, A painting was purchased 11 years ago for ...

A painting was purchased 11 years ago for $26900. It has just been sold for $78000. Calculate the flat rate of appreciation p.a.

How many cubic feet of steel is require to construct, A spherical holding t...

A spherical holding tank whose radius to the outer surface is 10 feet is constructed of steel 1 inch thick. How many cubic feet of steel is require to construct the holding tank? R

An even function, Assume that   i)  Determine all the roots of f...

Assume that   i)  Determine all the roots of f(x) = 0. ii)  Determine the value of k that makes h continuous at x = 3. iii)  Using the value of k found in (ii), sh

Hydrostatic pressure and force - applications of integrals, Hydrostatic Pre...

Hydrostatic Pressure and Force - Applications of integrals In this part we are going to submerge a vertical plate in water and we wish to know the force that is exerted on t

Multiply 3 (x + 4) = 3x + 12 to find out the total perimeter, Jake required...

Jake required to find out the perimeter of an equilateral triangle whose sides measure x + 4 cm each. Jake realized that he could multiply 3 (x + 4) = 3x + 12 to find out the total

The shortest distance between the line y-x=1 and curve x=y^2, Any point on ...

Any point on parabola, (k 2 ,k) Perpendicular distance formula: D=(k-k 2 -1)/2 1/2 Differentiating and putting =0 1-2k=0 k=1/2 Therefore the point is (1/4, 1/2) D=3/(32 1/2

Differential equations, Verify Liouville''''''''s formula for y "-y" - y'''...

Verify Liouville''''''''s formula for y "-y" - y'''''''' + y = 0 in (0, 1) ?

Possible outcome of a coin - probability based question, A coin is tossed t...

A coin is tossed twice and the four possible outcomes are assumed to be equally likely. If A is the event,  both head and tail have appeared , and B be the event at most one tail i

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd