Example of complex roots, Mathematics

Assignment Help:

Solve the subsequent IVP.

y'' - 4y' + 9y = 0, y(0) = 0, y'(0) = -8

Solution

The characteristic equation for such differential equation is. As:

 r2 - 4r + 9 = 0

 The roots of this equation are r1,2  = 2 + √(5i). So the general solution to the differential equation is as:

y(t) = c1 e2t cos (√5t)+ c2 e2t sin (√5t)

Here, you'll note that we didn't differentiate it right away as we did in the previous section. The motive for this is easy. But the differentiation is not terribly complicated this can find a little messy. Thus, first looking at the initial conditions we can notice from the first one which if we just applied it we would find the subsequent.

0 = y (0) + c1

Conversely, the first term will drop out so as to meet the first condition. It makes the solution, with its derivative as

y(t) = c2 e2t sin (√5t)

y'(t) = 2c2 e2t sin (√5t) +√5 c2 e2t cos (√5t)

A much fine derivative than if we'd complete the original solution. Here, apply the second initial condition to the derivative to find out,

-8 = y'(0) = √5 c2                   ⇒ c2 = -8/√5

The actual solution is here as:

y(t) =  -8/√5 e2t sin (√5t)


Related Discussions:- Example of complex roots

Fraccions, multiply 9/19 times 95/7

multiply 9/19 times 95/7

Pde, i find paper that has sam my homework which i need it, in you website...

i find paper that has sam my homework which i need it, in you website , is that mean you have already the solution of that ?

Mealy and Moore Machine, Distinguish between Mealy and Moore Machine? Const...

Distinguish between Mealy and Moore Machine? Construct a Mealy machine that can output EVEN or ODD According to the total no. of 1''s encountered is even or odd.on..

Find the lesser of two consecutive positive even integers, Find the lesser ...

Find the lesser of two consecutive positive even integers whose product is 168. Let x = the lesser even integer and let x + 2 = the greater even integer. Because product is a k

Limit, limit x APProaches infinity (1+1/x)x=e

limit x APProaches infinity (1+1/x)x=e

Computing change for a given coin system, This problem involves the questio...

This problem involves the question of computing change for a given coin system. A coin system is defined to be a sequence of coin values v1 (a) Let c ≥ 2 be an integer constant

Law of cosines - vector, Theorem a → • b → = ||a → || ||b → || cos• ...

Theorem a → • b → = ||a → || ||b → || cos• Proof Let us give a modified version of the diagram above. The three vectors above make the triangle AOB and note tha

Utilize the chain rule to differentiate, Chain Rule : Assume that we have ...

Chain Rule : Assume that we have two functions f(x) & g(x) and they both are differentiable. 1.   If we define F ( x ) = ( f o g ) ( x ) then the derivative of F(x) is,

Triangulos rectangulos y no rectangulos, el extremo de un poste que partió ...

el extremo de un poste que partió 8.45 metros de la base del poste y forma con el suelo un angulo de 40 grados 28 minutos.hallar la altura original del poste

How to dealing with exponents on negative bases, How to Dealing With Expone...

How to Dealing With Exponents on Negative Bases ? Exponents work just the same way on negative bases as they do on positive ones: (-2)0 = 1 Any number (except 0) raised to the

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd