Solutions to systems, Mathematics

Assignment Help:

Now that we've found some of the fundamentals out of the way for systems of differential equations it's time to start thinking about how to solve a system of differential equations. We will begin with the homogeneous system written in matrix form as,

x?' = A x?    ......................(1)

Here, A is an n x n matrix and x is a vector whose elements are the unknown functions into the system.

Here, if we begin with n = 1 then the system decreases to a fairly easy linear or separable first order differential equation,

x' = ax

And it has the following solution,

 x′ = ax

x (t) =  ceat

Therefore, let's use this as a guide and for a common n let's notice if,

x? (t) = ?h   ert    .................(2)

It will be a solution. Remember that the only real difference now is which we let the constant in front of the exponential be a vector. All we requirement to do then is plug it into the differential equation and notice what we find.  First see that the derivative is,

x? (t) = r ?hert   

Therefore upon plugging the guess in the differential equation we find,

r ?hert = A ?hert

(A - rI) ?hert =0?

Here, as we know that exponentials are not zero we can drop which portion and we after that see that so as for (2) to be a solution to (1) so we should have,

(A - rI) ?h = 0?

Or, so as for (2) to be a solution to (1), r and ?h should be an eigen-value and eigenvector for the matrix A.

Thus, so as to solve (1) we first get the eigen-values and eigenvectors of the matrix A and after that we can form solutions by using (2). There are going to be three cases which we'll require to look at.

The cases are as: real, distinct eigenvalues, complex eigenvalues and repeated eigenvalues.

None of that tells us how to wholly solve a system of differential equations. We'll require the subsequent couple of facts to do this.


Related Discussions:- Solutions to systems

Limits, evaluate limit as x approaches 0 (x squared times sin (1/x)

evaluate limit as x approaches 0 (x squared times sin (1/x)

Green function, greens function for x''''=0, x(1)=0, x''(0)+x''(1)=0 is G(t...

greens function for x''''=0, x(1)=0, x''(0)+x''(1)=0 is G(t,s)= {1-s for t or equal to s

#rounding off, I am the least two digit number which round off to 100?

I am the least two digit number which round off to 100?

Properties of dot product - vector, Properties of Dot Product u → • (v...

Properties of Dot Product u → • (v → + w → ) = u → • v → + u → • w →          (cv → ) • w → = v → •(cw → ) = c (v → •w → ) v → • w → = w → • v →

Define combined functions, Q. Define Combined Functions? Ans. We a...

Q. Define Combined Functions? Ans. We are often interested in functions which combine a trigonometric function with another type of function.  For example, y = x + sinx wi

How is probability distribution of random variable construct, How is the pr...

How is the probability distribution of a random variable constructed? Usually, the past behavior of the variable is studied and the frequency distribution of the past data is form

Simple interest, find the simple interest on Rs. 68,000 at 50/3 per annum f...

find the simple interest on Rs. 68,000 at 50/3 per annum for 9 month

Exercise to think about this aspect of children- maths, Doing the following...

Doing the following exercise will give you and opportunity to think about this aspect of children. E1) List some illustrations of exploration by four or five-year-olds that you

Core concepts of marketing, examination questions and answers to the above ...

examination questions and answers to the above title.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd