Evaluate the acceleration of the three weights, Mechanical Engineering

Assignment Help:

Evaluate the acceleration of the three weights:

A system of weight connected by the string passing over pulleys A and B is shown in figure given below. Find out acceleration of the three weights. Assume the weightless string and ideal condition for the pulleys.

Sol: As strings are weightless and ideal conditions prevail, thus the tensions in string passing over pulley A will be same. The tensions in string passing over pulley B will be same. But tensions in the strings passing over pulley A and over pulley B will be different as shown in the given figure.

Let T1  = Tension in string passing over pulley A
T2  = Tension in string passing over pulley B

One end of string passing over pulley A is connected to the weight 15N, and other end is connected to pulley B. As weight 15N is more than weights (6 + 4 = 10N), thus weight 15N will move downwards, while pulley B will move upwards. The acceleration of weight 15N and of pulley B will be same.

Let, a  = Acceleration of block 15N in the downward direction1  = Acceleration of 6N downward with respect to the pulley B.

Then acceleration of weight 4N with respect to the pulley B = a1  in upward direction.

1385_Evaluate the acceleration of the three weights.png

The absolute acceleration of weight 4N,

= Acceleration of 4N with respect pulley B + Acceleration of pulley B. = a1 + a (upward)

(as both the acceleration are in upward direction, total acceleration will be the sum of the two accelerations)

Absolute acceleration of weight 6N,

= Acceleration of 6 with respect to pulley B + Acceleration of pulley B.

= a1 - a (downward)

(As a1 is acting downward while a is acting upward. Thus total acceleration in downward direction)

Consider motion of weight 15N Net downward force = 15 - T1

Using F = ma,

15 - T1 = (15/9.81)a                                                                                                                         ...(1)

Consider motion of weight 4N

Net downward force = T2  - 4

Using F = ma,

T2  - 4 = (4/9.81)(a + a1)                                                                                                               ...(2)

Consider the motion of weight 6N

Net downward force = 6 - T2

Using F = ma,

6 - T2 = (6/9.81)(a1 - a)                                                                                                                ...(3)

Consider motion of pulley B,

T1=2T2                                                                                                                                         ...(4)

Adding equation (2) and (3)

2 = (4/9.81)(a + a1) + (6/9.81)(a1 - a)

9.81 = 5a1 - a                                                                                                                               ...(5)

Multiply equation (2) by 2 and put value of equation (4),

T1  - 8 = (8/9.81)(a1  + a)                                                                                                                ...(6)

Add equation (1) and (6), we get

15 - 8 = (15/9.81)a + (8/9.81)(a1  + a)

23a + 8a1 = 7 X 9.81                                                                                                                           ...(7)

Multiply equation (5) by 23 and add with equation (7),

a1 = 2.39m/sec2                                                                                                                         .....ANS

Putting value of a1 in equation (5),

a = 2.15m/sec2                                                                                                                            ....ANS

Acceleration of weight 15N = a = 2.15m/sec2                                                                   ......ANS

Acceleration of weight 6N = a = 0.24m/sec2                                                                     .......ANS

Accelerationofweight  4N = a = 4.54m/sec2                                                                      .......ANS



Related Discussions:- Evaluate the acceleration of the three weights

Design lay-down areas for plant, Q. Design lay-down areas for plant? De...

Q. Design lay-down areas for plant? Designated lay-down areas are areas specifically positioned to enable equipment maintenance to be carried out. These are normally assigned f

Slides and chutes, One of the simplest devices that have both vertical ...

One of the simplest devices that have both vertical and horizontal motion is a slide or chute. It may be straight or spiral and is static in nature. Gravity is utilized in

Construct a plain scale, Construct a plain scale: The distance between...

Construct a plain scale: The distance between Indore and Bhopal is 180 kilometer. It is represented on the map via 9 centimeter. Construct a plain scale for such map, illustra

Cell control and modeling, Cell Control And Modeling   Various numbers...

Cell Control And Modeling   Various numbers of modeling systems and cell control have been developed to date. Researchers have worked many on three broad regions: scheduling;

Metals and melting practices - ladle, Metals and Melting Practices - Ladle,...

Metals and Melting Practices - Ladle, Limestone,Ore,Sinter Ladle : A big bucket utilized as a carrier for molten metal. Limestone : A Blast Furnace raw material that elimi

Design pumps for plant layout, Q. Design Pumps for plant layout? Pumps ...

Q. Design Pumps for plant layout? Pumps handling flammable or combustible materials are relatively frequent sources of leakage and should therefore be located as far as practic

Find out the mechanical advantage of the machines, Find out the mechanical ...

Find out the mechanical advantage of the machines: A lifting machine may lift 800 N by the application of 100 N. Distance moved by the effort is 100 cm. At the same time load

Pressure, relation between fluid pressure and velocity

relation between fluid pressure and velocity

Tungsten inclusions, Tungsten Inclusions Tungsten inclusion is a disconti...

Tungsten Inclusions Tungsten inclusion is a discontinuity found only in TIG welding. Particles of tungsten from the electrode can be embedded in a weld when improper welding proc

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd