Derivative for the trig function, Mathematics

Assignment Help:

Derivative for the trig function: We'll begin with finding the derivative of the sine function. To do this we will have to utilize the definition of the derivative. It's been whereas since we've had to utilize this, however sometimes there just isn't anything we can do regarding it.  Following is the definition of the derivative for the sine function.

908_trig function5.png

As we can't just plug in h = 0 to evaluate the limit we will have to use the given trig formula on the first as in the numerator.

sin ( x + h ) = sin ( x ) cos ( h ) + cos ( x ) sin ( h )

Doing this gives us,

10_trig function6.png

As you can see upon by using the trig formula we can combine the first & third term and then factor out sine of that. Then we can break up the fraction in two pieces, both of which can be dealt separately.

Now, here both of the limits are limits as h approaches zero.  In the first limit we contain a sin(x) and in the second limit we contain a cos(x).  Both of these are just functions of x only and as h moves in towards zero it has no affect on the value of x. Thus, as far as the limits are concerned, these two functions are constants & can be factored out of their respective limits.

Doing this gives,

1572_trig function7.png

At this point all we have to do is utilizes the limits in the fact above to finish out this problem.

d (sin ( x )) / dx= sin ( x ) (0) + cos ( x ) (1)= cos ( x )

Differentiating cosine is completed in a similar fashion. It will need a different trig formula, however other than that is an almost identical proof. While done with the proof you should get,

                                           d (cos ( x )) / dx= - sin ( x )

Along with these two out of the way the remaining four are rather simple to get.  Remaining four trig functions can be explained in terms of sine & cosine and these definitions, along with suitable derivative rules, can be utilized to get their derivatives.

Let's take a look at tangent. Tangent is explained as,

                                              tan ( x ) = sin ( x ) /cos ( x )

Now that we have the derivatives of sine & cosine all that we have to do is use the quotient rule on this.  Let's accomplish that.

d ( tan (x ))/ dx = d ( sin ( x ) /cos(x))/dx

                           = cos ( x ) cos ( x ) - sin ( x )(- sin ( x )) /cos ( x ))2

                           = cos2 ( x ) + sin 2 ( x ) /cos2 ( x )

Now, recall that cos2 ( x ) + sin 2 ( x )= 1 and if we also recall the definition of secant in terms of cosine we arrive at,

d ( tan(x))/dx= cos2 ( x ) + sin 2( x ) /cos2 ( x )

                       = 1/cos2 (x )

                       = sec2 ( x )

The remaining three trig functions are also quotients including sine and/or cosine and hence can be differentiated in a same manner.  Following are the derivatives of all six of the trig functions.

Derivatives of the six trig functions

d (sin ( x ))/dx = cos ( x )              d (cos ( x )) /dx = - sin ( x )

d ( tan ( x )) /dx= sec2 ( x )                    d (cot ( x )) /dx= -csc 2 ( x )

d (sec ( x )) = sec (x) tan ( x )           d (csc ( x )) = -csc (x) cot ( x )


Related Discussions:- Derivative for the trig function

Precalculus, describe the end behavior of the following function using Limi...

describe the end behavior of the following function using Limit notation f(x)= 2x-1/x-1

Basics of series - sequences and series, Series - The Basics That top...

Series - The Basics That topic is infinite series.  So just define what is an infinite series?  Well, let's start with a sequence {a n } ∞ n=1 (note the n=1 is for convenie

Function expansion, The functions {sinmx; cosmx}; m = 0,....∞ form a ...

The functions {sinmx; cosmx}; m = 0,....∞ form a complete set over the interval x ∈ [ -Π, Π]. That is, any function f(x) can be expressed as a linear superposition of these

Math, the size of my sitting room is 7metres by 6metres . i bought a rug fo...

the size of my sitting room is 7metres by 6metres . i bought a rug for covering the centre of its floor. one metre of the floor around the edge of the room is not to be covered by

Compositions of relations, Let Consider R A Χ B, S B Χ C be two relation...

Let Consider R A Χ B, S B Χ C be two relations. Then compositions of the relations S and R given by SoR A Χ C and is explained by (a, c) €(S o R) iff € b € B like (a, b) € R,

Theorem on intervals of validity, Theorem Consider the subsequent IVP....

Theorem Consider the subsequent IVP. y′ =  p (t ) y = g (t )  y (t 0 )= y 0 If p(t) and g(t) are continuous functions upon an open interval a o , after that there i

How many teachers are there at russell high, There are 81 women teachers at...

There are 81 women teachers at Russell High. If 45% of the teachers in the school are women, how many teachers are there at Russell High? Use the proportion part/whole = %/100.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd