Carry out a perspective projection, Computer Graphics

Assignment Help:

Consider the line segment AB in 3-Dimentional parallel to the z-axis along with end points A (- 5,4,2) and also B (5,-6,18). Carry out a perspective projection upon the X=0 plane; here the eye is placed at (10, 0,10).

Solution: Suppose here that P (x, y, z) be any point in the space.

The parametric equation of a line beginning from E and passing via P is: E + t. (P - E), o < t < 1.

= (10,0,10) + t. [(x, y, z) - (10, 0, 10)]

= (10, 0,10) + t [(x - 10)], y (z - 10)]

= (t. (x - 10) + 10, t. y, t (z - 10) + 10)

Suppose a point P' can be obtained, as t = t*

∴P' = (x', y', z') = (t* (x - 10) + 10, t*.y, t*. (z - 10) + 10)

 Because the point P' lies on x = 0 plane as:

1898_Carry out a perspective projection 1.png

          Figure: (j)

= t* (x - 10) + 10 = 0

= t* =(- 10)/ (x - 10)

= P' = (x',y',z') = (0,((-10.y)/(x - 10)),(((-10)(z - 10))/(x - 10)), + 10)

(0, ((-10.y)/(x - 10)),((10x - 10z)/(x - 10)))

In terms of Homogeneous coordinate system;

P' = (x', y', z', 1) = ( 0, ((-y )/((x - 10) - 1)) ,  (x -z)/((x/10) - 1)), 1)

= (0, -y, x-z, ((x/10) - 1))

In Matrix form there is:

2067_Carry out a perspective projection 2.png

-------------------------(1)

In above equation (1) is the needed perspective transformation, that gives a coordinates of a projected point P' (x', y', z') on the x = 0 plane, whereas a point p (x, y, z) is viewed from E (10, 0, 10)

Currently, for the specified points A (-5, 4, 2) and B (5, -6, 18), A' and B' are their projection upon the x = 0 plane.

So now from Equation (1) we get:

1289_Carry out a perspective projection 3.png

= (0,-4, -7, ((-5/10) - 1))

= (0 , -40, -70, -15)

(0, 40/15, 70/15, 1)

Thus x1' = 0;  y1' = 2.67 ;    z1' = 4.67

As the same in:

137_Carry out a perspective projection 4..png

= (0, 60, - 130, - 5)

= (0, - 12, 26, 1)

 Thus x2' = 0 ;  y2' = - 12 ;    z2' = 26

Hence the projected points A' and B' of specified points A and B are:

A' = (x1', y1'z1') = (0, 2.67, 4.67)    and     B' = (x2', y2', z2') = (0, - 12, 26, 1)


Related Discussions:- Carry out a perspective projection

What are the different types of parallel projections, What are the differen...

What are the different types of parallel projections?  The parallel projections are basically divided into two types, depending on the relation among the direction of projectio

Describe the wiggler function in animation help, Question 1: (a) Descri...

Question 1: (a) Describe the term Mask Path and give brief steps how you could change a rectangle into a triangle with respect to time in AE CS3. (b) Expressions are ve

Potentially entering and leaving points - clipping, Potentially entering an...

Potentially entering and leaving points - P E and P L The intersection point of the line and window might be classified either like potentially leaving or entering. Before g

Differences of forward kinematics and inverse kinematics, Question 1: (...

Question 1: (a) Provide a clear explanation of what is ‘rigging' and its use? (b) What are the basic differences of Forward Kinematics (FK) and Inverse Kinematics (IK)? Wh

#, normal vector

normal vector

Explain the merits and demerits of penetration techniques, Explain the meri...

Explain the merits and demerits of Penetration techniques. The merits and demerits of the Penetration techniques are as follows:     It is an inexpensive method.     It h

Define computer graphics, Define Computer graphics.  Computer graphics ...

Define Computer graphics.  Computer graphics remains one of the most popular and rapidly growing computer fields. Computer graphics may be explained as a pictorial representati

Scan line polygon fill algorithm - raster graphics, Scan Line Polygon Fill ...

Scan Line Polygon Fill Algorithm - Raster Graphics In such algorithm, the information for a solid body is stored in the frame buffer and utilizing that information each pixel

Estimate general light such as bouncing around scene, identify a sphere alo...

identify a sphere along with a light source above it; hence its lower half will not be illuminated. In practice in a actual scene this lower half would be partially illuminated thr

Important points for windowing transformations, Important Points for Window...

Important Points for Windowing Transformations 1. Window explains what is to be viewed and viewpoint describes where it is to be displayed. 2. Frequently window and viewpoi

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd