Draw the letters s, p, r or u by using multiple bézier curve, Computer Graphics

Assignment Help:

Draw the letters S, P, R or U of English alphabet using multiple Bézier curves. 

A complete code for plotting Bezier curves is given previously. There in the code, control points for the Bézier curves are taken using mouse input.  Plot Bézier curves by first identifying the control points of the curve and then storing them in an array.  Always employ curves of same degree for plotting different parts of the alphabet letter.  In the following code, character  P  is generated using only quadratic Bézier curves. Straight line segments are also generated using a quadratic Bézier curve by choosing the control points on a straight line. 

/* Create the character P using multiple Bezier curves*/

#include

#include

#include  

#define n 2 //Uniform degree of all Bezier curves 

int ww=640,wh = 480; //Window Size

int OUT_CURVES = 18; //Counter for curves in outer boundary

int IN_CURVES=12; // Counter for curves in inner boundary

//Coordinates of control points for outer curves

int Px_Out[21]={90, 120, 160, 180, 180, 180, 180, 180, 160,

140, 120, 120,120, 120, 140, 140,140, 120, 90, 90, 90};

int Py_Out[21]={100, 100, 100, 100, 120, 140, 160, 180, 180,

180, 180, 230,230,240,240, 250, 260, 260, 260, 200,100};

//Coordinates of control points for inner curves

int Px_In[15]={120, 130, 140, 160, 160, 160, 160,

160,160,160,130,120,120,120,120};

int Py_In[15]={120, 120, 120, 120, 130, 140,

140,145,150,160,160,160,160,130,120};  

void myInit(){

    glClearColor(0.0,0.0,0.0,0.0);

    glColor3f(0.0,1.0,0.0);

    glPointSize(4.0); //Select point size 

    gluOrtho2D(0.0,640.0,0.0,480.0); 

    //For setting the clipping areas  

} //Initialize    

//Point plotting    

//Computing factorial of a number k

int factorial(int k) {

 int fact=1,i;

 for(i=1;i<=k;i++)

 fact=fact*i;

 return fact; }  

/* Draw a bezier curve with control points (x[i],y[i]),

i=0,..., n */

void drawBezier(int x[n+1], int y[n+1]) {

 double P_x,P_y;

 glColor3f(1.0,1.0,1.0); //Set drawing colour for curve

 for( double t=0.0;t<=1.0;t+=0.01){

  P_x=0.0; 

  P_y=0.0;

 glBegin(GL_POINTS); //Draw point (P_x,P_y) on the curve 

for( int i=0;i<=n;i++) {

 int cni=factorial(n)/(factorial(n-i)*factorial(i));

 P_x = P_x+(double)(x[i]*cni)*pow(1 - t,n-i)*pow(t,i); 

 P_y = P_y+(double)(y[i]*cni)*pow(1 - t,n-i)*pow(t,i); 

   }

 

   glVertex2f(P_x,wh -P_y); 

   }

 glEnd();

glFlush(); }

 

//Draw character P using Bezier curves

void Bezier()

{

 int Control_x[3], Control_y[3];

 //Outer Boundary curves 

 for (int j=0;j<=OUT_CURVES; j+=2){

  Control_x[0]=Px_Out[j];

  Control_y[0]=Py_Out[j];

  Control_x[1]=Px_Out[j+1];

  Control_y[1]=Py_Out[j+1];

  Control_x[2]=Px_Out[j+2];

  Control_y[2]=Py_Out[j+2];

 drawBezier(Control_x, Control_y);

 }

 //Inner Boundary curves

 for (int j=0;j<=IN_CURVES; j+=2){

  Control_x[0]=Px_In[j];

  Control_y[0]=Py_In[j];

  Control_x[1]=Px_In[j+1];

  Control_y[1]=Py_In[j+1];

  Control_x[2]=Px_In[j+2];

  Control_y[2]=Py_In[j+2];

 drawBezier(Control_x, Control_y);

 }

 glFlush();

}

//Draw character P on a mouse click

void myMouse(int button, int state, int x, int y) { 

 if(button == GLUT_LEFT_BUTTON && state == GLUT_DOWN) {      

  Bezier();

  glFlush();} 

}

void myDisplay() {

    glClear(GL_COLOR_BUFFER_BIT);

 //Bezier();

    glFlush();

}

int main() {

    glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB);

    glutInitWindowSize(ww,wh);

    glutInitWindowPosition(200,200);

    glutCreateWindow("Bezier curves");

    glutMouseFunc(myMouse);

    glutDisplayFunc(myDisplay);

    myInit();

    glutMainLoop();

 return 0;

}

 Other characters R,S,U can be similarly plotted using appropriate coordinates of the control points.


Related Discussions:- Draw the letters s, p, r or u by using multiple bézier curve

Determine the transformation matrix for cavalier projection, Determine the ...

Determine the transformation matrix for: a) Cavalier projection with θ=45 0 , and b) Cabinet projection with θ=30 0    c) Draw the projection of unit cube for all transfor

Time based and presentation tools, Time Based and Presentation Tools In...

Time Based and Presentation Tools In such authoring systems, components and events are organized beside a timeline, along with resolutions as high as 1/30 second. Time based to

Polygon representation methods - modeling and rendering, Polygon Representa...

Polygon Representation Methods - Modeling and Rendering Any scene to be created by computer graphics may include a variety of objects, a few of them natural and manmade. Hence

Animation, name some of the standard motion in key frames

name some of the standard motion in key frames

Uses for gif and jpeg files, Uses for GIF and JPEG Files: Microsoft I...

Uses for GIF and JPEG Files: Microsoft Internet Explorer, Netscape Navigator and most the other browsers maintain both JPEG and GIF graphics. Theoretically, you could util

Write a simple c-code to generate a circular arc, Write a simple C-code to ...

Write a simple C-code to generate a circular arc between two angle values. Use this to draw Figure.

How does the z-buffer algorithm find out which surfaces, Illustration 1: H...

Illustration 1: How does the z-buffer algorithm find out which surfaces are hidden? Solution : Depth or Z-buffer algorithm employs a two buffer area each of two-dimensional ar

Matrix for orthographic projection, Matrix for Orthographic Projection ...

Matrix for Orthographic Projection Orthographic projections are projections into one of the coordinate planes x=0, y=0or z=0. The matrix for orthographic projection on the z=0

perform a perspective projection on the plane, Consider at line segment AB...

Consider at line segment AB in the Figure k, parallel to the z-axis along with end points A (3, 2, 4) and B (3, 2, 8). Perform a perspective projection on the z = 0 plane from the

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd