Arc length with parametric equations, Mathematics

Assignment Help:

Arc Length with Parametric Equations

In the earlier sections we have looked at a couple of Calculus I topics in terms of parametric equations.  We now require to look at a parametric equations.

In this part we will look at the arc length of the parametric curve illustrated by,

x = f (t)

y = g (t)

α ≤ t ≤ β

We will as well be assuming that the curve is traced out exactly one time as t increases from α to β.  We will as well need to suppose that the curve is traced out from left to right as t increases. This is equal to saying,

dx/dt  ≥ 0        for  α ≤ t ≤ β

Thus, let's begin the derivation by recalling the arc length formula since we first derived it in the arc length part of the Applications of Integrals chapter.

L = ∫ ds

In which,

1774_Arc Length with Parametric Equations 2.png

We will make use of the first ds above since we have a nice formula for the derivative in terms of the parametric equations. To make use of this we'll as well need to know that,

 dx = f ′ (t) dt = (dx/dt) dt

After that the arc length formula becomes,

1413_Arc Length with Parametric Equations 3.png

This is a specifically unpleasant formula.  Though, if we factor out the denominator from the square root we reach at,

1816_Arc Length with Parametric Equations 4.png

Here now, utilizing our assumption that the curve is being traced out from left to right we can drop the absolute value bars on the derivative that will permit us to cancel the two derivatives that are outside the square root.


Related Discussions:- Arc length with parametric equations

High dimensions, List the five most important things you learned about high...

List the five most important things you learned about high dimensions.

Parametric equations and curves - polar coordinates, Parametric Equations a...

Parametric Equations and Curves Till to this point we have looked almost completely at functions in the form y = f (x) or x = h (y) and approximately all of the formulas that w

Solve sin (3t ) = 2 trig function, Solve sin (3t ) = 2 . Solution T...

Solve sin (3t ) = 2 . Solution This example is designed to remind you of certain properties about sine and cosine.  Recall that -1 ≤ sin (θ ) ≤ 1 and -1 ≤ cos(θ ) ≤ 1 .  Th

Explain comparing fractions with example, Explain Comparing Fractions with ...

Explain Comparing Fractions with example? If fractions are not equivalent, how do you figure out which one is larger? Comparing fractions involves finding the least common

Assumptions and application of t distribution, Assumptions and Application ...

Assumptions and Application of T Distribution Assumptions of t distribution 1. The sample observations are random 2. Samples are drawn from general distribution 3.

Write the equation of a circle, Example    Write down the equation of a cir...

Example    Write down the equation of a circle  alongwith radius 8 & center ( -4, 7 ) . Solution Okay, in this case we have r =8 , h = -4 and k = 7 thus all we have to do i

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd