Parametric equations and curves - polar coordinates, Mathematics

Assignment Help:

Parametric Equations and Curves

Till to this point we have looked almost completely at functions in the form y = f (x) or x = h (y) and approximately all of the formulas that we've developed needs that functions be in one of these two forms.  The complexity is that not all curves or equations that we'd like to come across at fall easily into this form.

Take, for instance, a circle. It is very easy to write down the equation of a circle centered at the origin with radius r.

x2 + y2 = r2

Though, we will never be capable to write the equation of a circle down as a single equation in either of the forms as illustrated above. Make sure that we can solve for x or y as the following two formulas show

y = + √ (r2 - x2)

x = + √ (r2 - y2)

But actually there are two functions in each of these. Each formula illustrates a portion of the circle.

y = √ (r2 - x2)  (top)

x = √ (r2 - y2) (right side)

y = - √ (r2 - x2) (bottom)

x = - √ (r2 - y2) (left side)

Unfortunately we generally are working on the whole circle, or just can't say that we're going to be working just only on one portion of it.  Although, if we can narrow things down to just only one of these portions the function is still frequently fairly unpleasant to work with.

There are as well a great several curves out there that we can't even write down as a single equation in terms of just only x and y.  Thus, to deal along with some of these problems we introduce parametric equations.

In place of defining y in terms of x (y= f (x)) or x in terms of y (x = h (y)) we describe both x and y in terms of a third variable known as a parameter as follows,

 x = f (t)

y = g (t)

This third variable is generally represented by t (as we did here) but doesn't have to be of course. Occasionally we will restrict the values of t that we'll make use of and at other times we won't. This will frequently be dependent on the problem and just what we are attempting to do.

Every value of t represents a point (x, y) = (f (t) , g (t)) that we can plot. The collection of points which we get by letting t be all possible values is the graph of the parametric equations and is termed as the parametric curve.

Sketching a parametric curve is not all time an easy thing to do.  Let us take a look at an instance to see one way of sketching a parametric curve. This instance will also demonstrate why this method is generally not the best.


Related Discussions:- Parametric equations and curves - polar coordinates

Factors, write down all the factors of 36

write down all the factors of 36

Tangent, construction of tangent when center not known

construction of tangent when center not known

Multiplacation, write and solve a problem of multiplacation that uses: esti...

write and solve a problem of multiplacation that uses: estimate explaning numbers picturs and another operation?

Types of series - telescoping series, Telescoping Series  It's now tim...

Telescoping Series  It's now time to look at the telescoping series.  In this section we are going to look at a series that is termed a telescoping series.  The name in this c

Determine the minimum cost , A company is taking bids on four construction ...

A company is taking bids on four construction jobs. Three Contractors have placed bids on the jobs. Their bids (in thousands of dollars) are given in the file. (A blank indicates n

Pre calc, - Find the total surface area of a frustum of a cone. (Include to...

- Find the total surface area of a frustum of a cone. (Include top and bottom). The equation that I have for volume is v=1/3 pi x h(r^2+rR+R^2) -the equation that I have found fo

Minimum and maximum values, Minimum and Maximum Values : Several applicati...

Minimum and Maximum Values : Several applications in this chapter will revolve around minimum & maximum values of a function.  Whereas we can all visualize the minimum & maximum v

Duality, how management making future decition by using duality

how management making future decition by using duality

Solve the extraneous solutions, Solve the Extraneous Solutions ? You're...

Solve the Extraneous Solutions ? You're worst enemy (aside from arithmetic mistakes), while you're trying to solve a rational equation, is forgetting to check for extraneous so

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd