Application of sutherland hodgman polygon clipping, Computer Graphics

Assignment Help:

For good understanding of the application of the rules specified above see the following figure, where the shaded region demonstrates the clipped polygon.

801_Application of Sutherland Hodgman Polygon Clipping.png

Figure: Sutherland-Hodgman Polygon Clipping

Pseudo code for Sutherland - Hodgman Algorithm

Define variables

In VertexArray is the array of input polygon vertices

outVerteArray is the array of output polygon vertices

Nin is the number of entries in inVertexArray

Nout is the number of entries in outVertexArray

n is the number of edges of the clip polygon

ClipEdge[x] is the xth edge of clip polygon defined by a pair of vertices

s, p are the start and end point respectively of current polygon edge

i is the intersection point with a clip boundary

j is the vertex loop counter

Define Functions

AddNewVertex(newVertex, Nout, outVertexArray)

: Adds newVertex to outVertexArray and then updates Nout

InsideTest(testVertex, clipEdge[x])

: Checks whether the vertex lies inside the clip edge or not;

  retures         TRUE is inside else returns FALSE

Intersect (first, second, clipEdge[x])

: Clip polygon edge (first, second) against clipEdge[x], outputs the intersection point

{                                        :  begin main

x = 1

while (x ≤ n)                     : Loop through all the n clip edges

{

Nout = 0                            : Flush the outVertexArray

s = inVertexArray[Nin] : Start with the last vertex in inVertexArray

for j = 1 to Nin do             : Loop through Nin number of polygon vertices (edges)

{

p = inVertexArrray[j]

if InsideTest(p, clipEdge[x] = = TRUE then                     : Case A

and D

if InsideTest(s, clipEdge[x] = = TRUE then

AddNewVertex(p, Nout, outVertexArray)                        : Case A

else

i = Intersect(s, p, clipEdge[x])                           :  Case D

AddNewVertex(i, Nout, outVertexArray)

AddNewVertex(p, Nout, outVertexArray)

end if

else      :  i.e. if InsideTest(p, clipEdge[x] = = FALSE

(Cases 2 and 3)

if InsideTest(s, clipEdge[x]) = =TRUE then                     : Case B

{

 Intersect(s, p, clipEdge[x])

AddNewVertex(i, Nout, outVertexArray)

end if                                        : No action for case C

 

s = p                                         : Advance to next pair of vertices j = j + 1

end if                                         :  end {for}

}

x = x + 1                                     : Proceed to the next ClipEdge[x +1]

Nin = Nout

inVertexArray = outVertexArray            :  The output vertex array for the current clip edge becomes the input vertex array for the next clip edge

}                                        : end while

}                                        : end main


Related Discussions:- Application of sutherland hodgman polygon clipping

Persistence of phosphor - display devices, Persistence (of phosphor) - Disp...

Persistence (of phosphor) - Display devices Time it takes the emitted light from screen to decay to one-tenth of its original intensity. The point where an electron gun strikes

Describe transformation, What is Transformation?  Transformation is the...

What is Transformation?  Transformation is the process of introducing changes in the shape size and orientation of the object using scaling rotation reflection shearing & trans

Drawing, how can I draw a flower.

how can I draw a flower.

Reflecting the ball off of a polyline, To reflect the ball off of the polyl...

To reflect the ball off of the polyline, we need to re?ect it off of the segment that had the minimum thit. But the reflection computation depends only on t hit , n, P and v, so th

Polygon surfaces - curves and surfaces, Polygon Surfaces - Curves and Surfa...

Polygon Surfaces - Curves and Surfaces   By Figure 1 and Figure 2 it is clear that it is possible to store description of objects as a set of surface polygons and similar i

Scan line polygon fill and seed fill or flood fill algorithm, 1.   Distingu...

1.   Distinguish among Scan line polygon fill and Seed fill or Flood fill algorithm? Scan Line Polygon Flood Fill Algorithms ?1. This

Rotation - 2-d and 3-d transformations, Rotation - 2-d and 3-d transformati...

Rotation - 2-d and 3-d transformations Given a 2-D point P(x,y), that we want to rotate, along with respect to an arbitrary point A(h,k). Suppose P'(x'y') be the effect of ant

Fill in the blanks, a__________of a scene is apart of a scene by which rela...

a__________of a scene is apart of a scene by which relate one part of the scene with the other parts of the scene

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd