Application of sutherland hodgman polygon clipping, Computer Graphics

Assignment Help:

For good understanding of the application of the rules specified above see the following figure, where the shaded region demonstrates the clipped polygon.

801_Application of Sutherland Hodgman Polygon Clipping.png

Figure: Sutherland-Hodgman Polygon Clipping

Pseudo code for Sutherland - Hodgman Algorithm

Define variables

In VertexArray is the array of input polygon vertices

outVerteArray is the array of output polygon vertices

Nin is the number of entries in inVertexArray

Nout is the number of entries in outVertexArray

n is the number of edges of the clip polygon

ClipEdge[x] is the xth edge of clip polygon defined by a pair of vertices

s, p are the start and end point respectively of current polygon edge

i is the intersection point with a clip boundary

j is the vertex loop counter

Define Functions

AddNewVertex(newVertex, Nout, outVertexArray)

: Adds newVertex to outVertexArray and then updates Nout

InsideTest(testVertex, clipEdge[x])

: Checks whether the vertex lies inside the clip edge or not;

  retures         TRUE is inside else returns FALSE

Intersect (first, second, clipEdge[x])

: Clip polygon edge (first, second) against clipEdge[x], outputs the intersection point

{                                        :  begin main

x = 1

while (x ≤ n)                     : Loop through all the n clip edges

{

Nout = 0                            : Flush the outVertexArray

s = inVertexArray[Nin] : Start with the last vertex in inVertexArray

for j = 1 to Nin do             : Loop through Nin number of polygon vertices (edges)

{

p = inVertexArrray[j]

if InsideTest(p, clipEdge[x] = = TRUE then                     : Case A

and D

if InsideTest(s, clipEdge[x] = = TRUE then

AddNewVertex(p, Nout, outVertexArray)                        : Case A

else

i = Intersect(s, p, clipEdge[x])                           :  Case D

AddNewVertex(i, Nout, outVertexArray)

AddNewVertex(p, Nout, outVertexArray)

end if

else      :  i.e. if InsideTest(p, clipEdge[x] = = FALSE

(Cases 2 and 3)

if InsideTest(s, clipEdge[x]) = =TRUE then                     : Case B

{

 Intersect(s, p, clipEdge[x])

AddNewVertex(i, Nout, outVertexArray)

end if                                        : No action for case C

 

s = p                                         : Advance to next pair of vertices j = j + 1

end if                                         :  end {for}

}

x = x + 1                                     : Proceed to the next ClipEdge[x +1]

Nin = Nout

inVertexArray = outVertexArray            :  The output vertex array for the current clip edge becomes the input vertex array for the next clip edge

}                                        : end while

}                                        : end main


Related Discussions:- Application of sutherland hodgman polygon clipping

Put the system of a geometric data table for a 3d rectangle, Put the system...

Put the system of a geometric data table for a 3d rectangle. Solution : Vertex Table Edge Table Polygon Surface Table

CRT, why there is coating of phosphorous on CRT screen?

why there is coating of phosphorous on CRT screen?

Physics - based modeling, Draw the five regular polyhedras using physics-ba...

Draw the five regular polyhedras using physics-based modeling method. Implement a fractal algorithm with possible personal extensions. Also, specify the extensions.

Explain about the computer-aided design, Explain about the Computer-Aided D...

Explain about the Computer-Aided Design CAD is used in the design and development of new products in a several of applications both at home and on a commercial/industrial basis

Basic ray tracing algorithm - polygon rendering, Basic Ray Tracing Algorith...

Basic Ray Tracing Algorithm - Polygon Rendering The Hidden-surface removal is the most complete and most versatile method for display of objects in a realistic fashion. The co

Scaling, uniform scaling and differential scaling with the help of diagram

uniform scaling and differential scaling with the help of diagram

Explain shannon -fano algorithm, (a) Differentiate between the following co...

(a) Differentiate between the following compression algorithm: 1. Shannon -Fano Algorithm and 2. Huffman Encoding (b) A statistical encoding algorithm is being considered

Improving gif compression, Improving GIF Compression: Features of LZW comp...

Improving GIF Compression: Features of LZW compression can be used to enhance its efficiency and thereby decrease the size of your graphic interchange format graphics. The strateg

What is a model sheet?, Question 1 Briefly explain the twelve principles o...

Question 1 Briefly explain the twelve principles of animation Question 2 Explain the methods to set-up pre and post-infinity curves Question 3 What is a model sheet? Exp

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd