Algorithmic implementation of multiple stacks, Data Structure & Algorithms

Assignment Help:

So far, we now have been concerned only with the representation of single stack. What happens while a data representation is required for several stacks? Let us consider an array X whose dimension is m. For convenience, we will assume that the indexes of array commence from 1 and end at m. If we contain only 2 stacks to implement in the similar array X, then the solution is simple.

Assume A and B are two stacks. We may define an array stack A with n1 elements and an array stack B along with n2 elements. Overflow might occur when either stacks A contains more than n1 elements or stack B have more than n2 elements.

Assume, rather than that, we define a single array stack along n = n1 + n2 elements for stack A & B together. Let the stack A "grow" to the right, and stack B "grow" to the left. In this case, overflow will takes place only when A and B together have more than n = n1 + n2 elements. It does not matter how several elements individually are there in each stack.

However, in the case of more than 2 stacks, we cannot represent these in the similar way since a one-dimensional array has two fixed points X(1) and X(m) only and each of stack needs a fixed point for its bottom most element. While more than two stacks, say n, are to be sequentially represented, initially we can divide the obtainable memory X(1:m) into n segments. If the sizes of stacks are known, then, we can assign the segments to them in proportion to the probable sizes of the several stacks. If the sizes of the stacks are not known, then, X(1:m) might be divided into equal segments. For each stack i, we will use BM (i) to represent a position one less than the position in X for the bottom most element of that stack. TM(i), 1 < i < n will point to the topmost element of stack i. We will use the boundary condition BM (i) = TM (i) if the ith stack is empty .If we grow the ith stack in lower memory indexes than i+1st stack, then, with roughly equal initial segments we have

BM (i) = TM (i) =   m/n (i - 1), 1 < i < n, as the initial values of BM (i) & TM (i).

All stacks are empty and memory is divided in roughly equal segments.

Figure illustrates an algorithm to add an element to the ith stack. Figure illustrates an algorithm to delete an element from the ith stack.

ADD(i,e)

Step1: if TM (i)=BM (i+1)

Print "Stack is full" and exit

Step2: [Increment the pointer value through one]

TM (i)← TM (i)+1

X(TM (i))← e

Step3: Exit

//remove the topmost elements of stack i.

DELETE(i,e)

Step1: if TM (i)=BM (i)

Print "Stack empty" and exit

Step2: [remove the topmost item]

e←X(TM (i))

TM (i)←TM(i)-1

Step3: Exit


Related Discussions:- Algorithmic implementation of multiple stacks

State flowchart that take temperature input using pseudocode, Write an algo...

Write an algorithm using pseudocode which takes temperatures input over a 100 day period (once per day) and output the number of days when the temperature was below 20C and the num

Recursion, differences between direct and indirect recursion

differences between direct and indirect recursion

Terminology used for files structures, Given are the definitions of some im...

Given are the definitions of some important terms: 1) Field: This is an elementary data item characterized by its size, length and type. For instance, Name

Explain graph traversal, Graph Traversal In many problems we wish to in...

Graph Traversal In many problems we wish to investigate all the vertices in a graph in some systematic order. In graph we often do not have any single vertex singled out as spe

Breadth-first search , 1. Apply the variant Breadth-First Search algorithm ...

1. Apply the variant Breadth-First Search algorithm as shown in Figure 2 to the attached graph. This variant is used for computing the shortest distance to each vertex from the sta

Binary tree creation, Binary tree creation struct NODE { struct N...

Binary tree creation struct NODE { struct NODE *left; int value; struct NODE *right; }; create_tree( struct NODE *curr, struct NODE *new ) { if(new->val

Write the algorithm to find input and output value, This algorithm inputs 5...

This algorithm inputs 5 values and outputs how many input numbers were positive and how many were negative. Data to be used: N = 1, -5, 2, -8, -7

Hashing and hash functions, Q. Describe the term hashing. Explain any two u...

Q. Describe the term hashing. Explain any two usually used hash functions. Explain one method of collision resolution.

Post order traversal, Post order traversal: The children of node are vi...

Post order traversal: The children of node are visited before the node itself; the root is visited last. Each node is visited after its descendents are visited. Algorithm fo

Algorithm for determining strongly connected components, Algorithm for dete...

Algorithm for determining strongly connected components of a Graph: Strongly Connected Components (G) where d[u] = discovery time of the vertex u throughout DFS , f[u] = f

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd