A composable-reset DFA (CR-DFA) is a five-tuple, Theory of Computation

Assignment Help:

Question 2 (10 pt): In this question we look at an extension to DFAs. A composable-reset DFA (CR-DFA) is a five-tuple, (Q,S,d,q0,F) where:
– Q is the set of states,
– S is the alphabet,
– d:Q×(S?{?})?Qisthetransitionfunction, – q0 ? Q is the start state, and
– F ? Q is the set of accept states.
Every CR-DFA must satisfy one additional property:
When running a CR-DFA one can take a ?-transition if and only if the input has already been exhausted, and d cannot have any cycles that have a ?-transition.
A CR-DFA differs from a DFA by the addition of a new symbol denoted ? which can only be used by the transition function. This symbol is not part of the alphabet of the DFA.
The run function for a CR-DFA is defined as follows:
dˆ 0 : Q × S * × S * ? Q dˆ0(q,e,w1) = q
if d(q, ?) is undefined. dˆ0(q, e, w1) = dˆ0(q', w1, w1)
if d(q, ?) = q'
dˆ0(q, aw, w1) = dˆ0(q', w, w1)
if d(q, a) = q' dˆ : Q × S * ? Q
dˆ ( q , w ) = dˆ ( q , w , w ) 0
1
We can see that the run function, dˆ, is defined interms of an auxiliary function called dˆ0. The latter takes three arguments: i. the current state, the input word, and a second input word called w1. The second input word is called an accumulator, and it will be used to remember the original input to the run function, but when defining the auxiliary run function we leave this arbitrary.
The definition of the auxiliary run function follows the definition of the run function for DFAs, but in the case where the input word has been exhausted we check to see if the transition function allows the input to be reset to w1, and if it does, then we call dˆ0 on the next state given by d, and the input word is reset to w1. If when the input is exhausted and the transition function does not allow a ?-transition, then we proceed as usual.
Note that the definition of acceptance for a CR-DFA is the same as for DFAs.
We now define an interesting language. Suppose S = {a, b, c, d, ?, ?} is an alphabet. The symbol ? represents a binary operation, and the symbols a, b, c, d, and ? represent inputs to the binary operation ?. The language L is defined by the following:
i. a,b,c,d,? ? L
ii. Foranyei ?S,thewordw=e1?e2?e3?···?en ?L
iii. For any w ? L, any well-balanced parenthesization of w is a member of L
iv. There are no other words in L.
The following are some example words in L:
a
b
c
d
?
(a?b) (a?(b?c)) (a?(b?(c?d))) a?b?c (a?b)?c
So the words of L are all the possible associations of applications of the binary operation ?. Define a CR-DFA in the diagrammatic from used with DFAs that recognizes the language L as defined above. In addition, describe why CR-DFAs are bad in practice.

Related Discussions:- A composable-reset DFA (CR-DFA) is a five-tuple

Sketch an algorithm for recognizing language, Suppose A = (Σ, T) is an SL 2...

Suppose A = (Σ, T) is an SL 2 automaton. Sketch an algorithm for recognizing L(A) by, in essence, implementing the automaton. Your algorithm should work with the particular automa

Prove the arden''s theorem, State and Prove the Arden's theorem for Regular...

State and Prove the Arden's theorem for Regular Expression

Instantaneous description of an fsa, De?nition Instantaneous Description of...

De?nition Instantaneous Description of an FSA: An instantaneous description (ID) of a FSA A = (Q,Σ, T, q 0 , F) is a pair (q,w) ∈ Q×Σ* , where q the current state and w is the p

Two-tape turing machine, Let there L1 and L2 . We show that L1 ∩ L2 is CFG ...

Let there L1 and L2 . We show that L1 ∩ L2 is CFG . Let M1 be a decider for L1 and M2 be a decider for L2 . Consider a 2-tape TM M: "On input x: 1. copy x on the second

Programming languages, Different types of applications and numerous program...

Different types of applications and numerous programming languages have been developed to make easy the task of writing programs. The assortment of programming languages shows, dif

Abstract model of computation, When we say "solved algorithmically" we are ...

When we say "solved algorithmically" we are not asking about a speci?c programming language, in fact one of the theorems in computability is that essentially all reasonable program

Universality problem, The Universality Problem is the dual of the emptiness...

The Universality Problem is the dual of the emptiness problem: is L(A) = Σ∗? It can be solved by minor variations of any one of the algorithms for Emptiness or (with a little le

Generalization of the interpretation of local automata, The generalization ...

The generalization of the interpretation of strictly local automata as generators is similar, in some respects, to the generalization of Myhill graphs. Again, the set of possible s

Mealy machine, Construct a Mealy machine that can output EVEN or ODD Accord...

Construct a Mealy machine that can output EVEN or ODD According to the total no. of 1''s encountered is even or odd.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd