Reference no: EM13529901 
                                                                               
                                       
1. Find the value of the polynomial –x2 + 4x + 10  when x = –2.
 A)  6    B)  –22    C)  –2    D)  14 
3. Simplify.     (a7b2)7
 A)  a7b14    B)  a49b14    C)  a14b9    D)  a7b9
4. Multiply.     (5a – 3b)2
 A)  25a2 – 30ab – 9b2    B)  25a2 + 9b2    C)  25a2 – 9b2    D)  25a2 – 30ab + 9b2
6. Multiply.     (–5x + 4)2
 A)  25x2 – 20x + 16    B)  25x2 + 16    C)  25x2 – 40x + 16    D)  –5x2 – 20x + 16
8. Remove the parentheses.     –(4m – 3n)
 A)  –4m – 3n    B)  –4m + 3n    C)  4m + 3n    D)  4m – 3n
9. Multiply.    (4m – 3n)(4m + 3n)
 A)  16m2 – 9n2    B)  16m2 + 9n2    C)  16m2 + 24mn – 9n2    D)  16m2 – 24mn + 9n2
10. Evaluate (assume x != 0).
 –10x0
 A)  1    B)  –10x    C)  0    D)  –10 
12. Multiply.    –3x(10x + 9)
 A)  –57x2    B)  30x2 – 27x    C)  –30x2 + 9x    D)  –30x2 – 27x
14. Add 5y – 4 and 2y2 – 8y.
 A)  7y2 – 12y – 4    B)  2y2 – 3y – 4    C)  2y2 + 13y – 4    D)  2y2 + 3y – 4
15. What is the degree of the polynomial x12 – 5x4?
 A)  4    B)  5    C)  12    D)  –5
16. Determine which of the ordered pairs are solutions for the equation.
 x – 4y = 7
A) (–1, –2), (15, 4), (13, –5), (15, 2)
B) (–1, –2), (23, 4), (–13, –5), (15, 2)
C) (–1, –2), (23, 4), (15, –5), (–13, 2)
D) (–1, –2), (23, 4), (–13, –5), (–15, 2)
17. Complete the ordered pairs so that each is a solution for the equation.
 3x + 4y = 10 (2, __ ), ( __ , 7), (–2, __ ), ( __ , –5)
A) (2, –1), (–6, 7), (–2, –4), (10, –5)
B) (2, 4), (–6, 7), (–2, 1), (10, –5)
C) (2, 1), (–6, 7), (–2, 4), (10, –5)
D) (2, 1), (4, 7), (–2, 4), (1, –5) 
20. Is the pair of lines parallel, perpendicular, or neither?
 L1 through (–2, –3) and (0, 5); L2 through (2, –1) and (–4, 7); 
A) parallel
B) perpendicular
C) neither
21. Is the pair of lines parallel, perpendicular, or neither?
 L1 through (3, 4) and (–1, 8); L2 through (–1, 0) and (3, 4) 
A) parallel
B) perpendicular
C) neither
22. Write the equation of the line passing through (–5, 14) with the slope –2.
A) y = –2x + 10
B) y = –2x + 4
C) y = –1/2 x + 4
D) y = –2x + 6