The central limit theorem, Mathematics

Assignment Help:

The Central Limit Theorem

 The theories was introduced by De Moivre and according to it; if we choose a large number of simple random samples, says from any population and find out the mean of each sample, the distribution of these sample means will tend to be described by the common probability distribution along with a mean µ and variance σ2/n. It is true even if the population itself is not normal distribution. Or the sampling distribution of sample means approaches to a normal distribution irrespective of the distribution of population from whereas the sample is consider and approximation to the normal distribution becomes increasingly close along with increase in sample sizes

 


Related Discussions:- The central limit theorem

Interpretation of the second derivative, Interpretation of the second deriv...

Interpretation of the second derivative : Now that we've discover some higher order derivatives we have to probably talk regarding an interpretation of the second derivative. I

What is the average temperature on the celsius scale, Peggy's town has an a...

Peggy's town has an average temperature of 23° Fahrenheit in the winter. What is the average temperature on the Celsius scale? If the total amount for both is 80, after that th

Logarithm functions, Logarithm Functions : In this section we'll discuss l...

Logarithm Functions : In this section we'll discuss look at a function which is related to the exponential functions we will learn logarithms in this section. Logarithms are one o

Determine the probability that is of low quality, 1) A local factory makes ...

1) A local factory makes sheets of plywood. Records are kept on the number of mild defects that occur on each sheet. Letting the random variable x represent the number of mild de

Derivatives of exponential and logarithm functions, Derivatives of Exponent...

Derivatives of Exponential and Logarithm Functions : The next set of functions which we desire to take a look at are exponential & logarithm functions. The most common exponentia

Find the sum of given equation upto n limit, Find the sum of (1 - 1/n ) + (...

Find the sum of (1 - 1/n ) + (1 - 2/n ) + (1 - 3/n ) ....... upto n terms. Ans: (1 - 1/n ) + (1 - 2/n ) - upto n terms   ⇒[1+1+.......+n terms] - [ 1/n + 2/n +....+

rational nmber, every rational nmber is expressible either as a_________or...

every rational nmber is expressible either as a_________or as a____________decimal.

Factoring polynomials, Factoring polynomials is probably the most important...

Factoring polynomials is probably the most important topic. We already learn factor of polynomial .If you can't factor the polynomial then you won't be able to even start the probl

Find inverse laplace transform, Question: Find Inverse Laplace Transfor...

Question: Find Inverse Laplace Transform of the following (a) F(s) = (s-1)/(2s 2 +8s+13)     (b) F(s)= e -4s /(s 2 +1) + (1/s 3 )

How i get orders, how i become an assignment helper?n how i get order from ...

how i become an assignment helper?n how i get order from students?what should i do

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd