Fundamental theorem of calculus, part ii, Mathematics

Assignment Help:

Fundamental Theorem of Calculus, Part II

Assume f ( x ) is a continuous function on [a,b] and also assume that F ( x ) is any anti- derivative for f ( x ) . Then,

                                ∫baf ( x ) dx = F ( x )|b a= F (b ) - F ( a )

Recall that while we talk regarding an anti-derivative for a function we are actually talking regarding the indefinite integral for the function.  Therefore, to evaluate definite integral the first thing which we're going to do is evaluate the indefinite integral for the function. It should describe the likeness in the notations for the indefinite & definite integrals.

Also notice that we need the function to be continuous within the interval of integration. It was also needs in the definition of the definite integral.

Next let's address the fact that we can utilize any anti-derivative of f ( x ) in the evaluation.  Let's take an ultimate look at the given integral.

                                                 ∫0 2 x2  + 1dx

Both are anti-derivatives of the integrand.

F ( x ) = 1/3 x3 + x                     and            F ( x ) = (1/3) x3 + x - (18/31)

By using the FToC to evaluate this integral along with the first anti-derivatives gives,

734_Fundamental Theorem5.png

=(1/3) (2)3 + 2- ( (1/3)(0) 3 +0)

= 14 /3

Much easier than utilizing the definition wasn't it? Now let's utilizes the second anti-derivative to evaluate this definite integral.

1676_Fundamental Theorem6.png

= (1/3) ( 2)3 + 2 - 18 /31- ( 1/3 (0)3 + 0 - 18/31)

 =(1/3)(2)3+2-(18/31)-((1/3)(0)3+0-(18/31))

=14/3 - 18/31 + 18/31 = 14/3

The constant which we tacked onto the second anti-derivative canceled out in the evaluation step.  Thus, while choosing the anti-derivative to utilizes in the evaluation procedure make your life simpler and don't bother with the constant as it will just end up canceling in the long run.

Also, note as well that we're going to contain to be very careful with minus signs and parenthesis along these problems.  It's extremely easy to get in hurry & mess them up.

Let's begin our examples along with the following set designed to create a couple of quick points that are extremely important.

Example Evaluate following.

(a)   ∫ 2 (1) y 2 + y -2  dy

(b)   ∫ 2 (-1) y 2 + y -2  dy

 

(a) 202_Fundamental Theorem7.png

Following is the integral,

 

      =( 1/3) 2 3 - (1/2)-((1/3)(1)3-(1/1))

     =(8/3)-(1/2)-(1/3)+(1)

     =(17/6)

(a)    ∫ 2 (-1) y 2 + y -2  dy

This integral is to make a point. To do an integral the integrand has to be continuous in the range of the limits.  In this case the second term will have division by zero at y = 0 and as y = 0 is in the interval of integration, that means it is among the lower & upper limit, this integrand is not continuous in the interval of integration & thus we can't do this integral.

Note as well that this problem will not stop us from doing the integral in (b) as y = 0 is not in the interval of integration.


Related Discussions:- Fundamental theorem of calculus, part ii

Find the total cost of the shop of arithmetic progressions, Raghav buys a s...

Raghav buys a shop for Rs.1,20,000.He pays half the balance of the amount in cash and agrees to pay the balance in 12 annual instalments of Rs.5000 each. If the rate of interest is

Determine the domain and range of function, Determine the domain of each of...

Determine the domain of each of the following functions.                         f( x ) = x - 4 / x 2 - 2 x -15 Solution With this problem we have to avoid division by

What is the greatest common factor of 24 and 64, What is the greatest commo...

What is the greatest common factor of 24 and 64? List the factors of 24 and 64. The largest factor that they have in common is the greatest common factor. Factors of 24: 1,

Properties of dot product - proof, Properties of Dot Product - proof P...

Properties of Dot Product - proof Proof of: If v → • v → = 0 then v → = 0 → This is a pretty simple proof.  Let us start with v → = (v1 , v2 ,.... , vn) a

Pricing, what is skimming pricing?

what is skimming pricing?

Sciencetific notations, how would you answer a question like this on here ...

how would you answer a question like this on here (8x10^5)

Compound interest, you have RM5O,OOO to invest,and two fund that you''d li...

you have RM5O,OOO to invest,and two fund that you''d like to invest in.The You-Risk-It Fund yields 14% interest.The Extra-Dull Fund yields 6% interest.Besause of college financial-

Develop a linear program to investment advisory firm, An investment advisor...

An investment advisory firm manages funds for its numerous clients. The company uses an asset allocation model that recommends the portion of each client's portfolio to be invested

How will you use the Gantt chart for solving the sequencing, How will you u...

How will you use the Gantt chart for solving the sequencing problem?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd