Strictly k-local automata, Theory of Computation

Strictly 2-local automata are based on lookup tables that are sets of 2-factors, the pairs of adjacent symbols which are permitted to occur in a word. To generalize, we extend the 2-factors to k-factors. We now have the possibility that the scanning window is actually longer than the augmented string. To accommodate that, we will permit factors of any length up to k as long as they start with ‘x' and end with ‘x' as well as k-factors which may or may not start with ‘x' or end with ‘x'.

So a strictly k-local automaton is just an alphabet and a set of stings of length k in which the ?rst symbol is either x or a symbol of the alphabet and the last is either x or a symbol of the alphabet, plus any number of strings of length no greater than k in which the ?rst and last symbol are x and x, respectively. In scanning strings that are shorter than k - 1, the automaton window will span the entire input (plus the beginning and end symbols). In that case, it will accept i? the sequence of symbols in the window is one of those short strings.

You should verify that this is a generalization of SL2 automata, that if k = 2 the de?nition of SLk automata is the same as the de?nition of SL2 automata.

Posted Date: 3/22/2013 1:20:24 AM | Location : United States







Related Discussions:- Strictly k-local automata, Assignment Help, Ask Question on Strictly k-local automata, Get Answer, Expert's Help, Strictly k-local automata Discussions

Write discussion on Strictly k-local automata
Your posts are moderated
Related Questions
One might assume that non-closure under concatenation would imply non closure under both Kleene- and positive closure, since the concatenation of a language with itself is included

We'll close our consideration of regular languages by looking at whether (certain) problems about regular languages are algorithmically decidable.

The objective of the remainder of this assignment is to get you thinking about the problem of recognizing strings given various restrictions to your model of computation. We will w

Exercise Show, using Suffix Substitution Closure, that L 3 . L 3 ∈ SL 2 . Explain how it can be the case that L 3 . L 3 ∈ SL 2 , while L 3 . L 3 ⊆ L + 3 and L + 3 ∈ SL

Our DFAs are required to have exactly one edge incident from each state for each input symbol so there is a unique next state for every current state and input symbol. Thus, the ne


Find the Regular Grammar for the following Regular Expression: a(a+b)*(ab*+ba*)b.

Proof (sketch): Suppose L 1 and L 2 are recognizable. Then there are DFAs A 1 = (Q,Σ, T 1 , q 0 , F 1 ) and A 2 = (P,Σ, T 2 , p 0 , F 2 ) such that L 1 = L(A 1 ) and L 2 = L(

c program to convert dfa to re

how to convert a grammar into GNF