Reduce the rational expression to lowest terms, Mathematics

Assignment Help:

Reduce the following rational expression to lowest terms.

                                    x2 - 2 x - 8/ x2 - 9 x + 20

Solution

When reducing a rational expression to lowest terms the first thing that we will do is factor both the numerator and denominator as much as possible. That ought to always be the first step in these problems.

Also, the factoring in this section, & all successive section for that matter, will be done with no explanation. It will be supposed that you are capable of doing and/or verifying the factoring on your own.  In other terms, ensure that you can factor!

x2 - 2x - 8 /x2 - 9 x + 20

First we'll factor things out as fully as possible. Remember that we can't cancel out anything at this instance in time as every term contain a "+" or a "-" on one side of it! We've got to factor

x2 - 2 x - 8 /x2 - 9 x + 20 = ( x - 4) ( x + 2)/( x - 5) (x - 4)

At this instance we can see that we've got a common factor in the numerator and the denominator both and so we can cancel out the x-4 from both. Doing this gives,

                                  x2 - 2 x - 8 /x2 - 9 x + 20 = x + 2 /x - 5

It is also all the farther that we can go.  Nothing else will cancel out and thus we have decreased this expression to lowest terms.

 

In other terms, a minus sign in front of a rational expression can be moved over the whole numerator or whole denominator if this is convenient to do that.  However, we ought to be careful with this.  Let the following rational expression.

                                                              - x + 3 /x + 1

In this case the "-" onto the x can't be moved to the front of the rational expression as it is only on the x.  To move a minus sign to the front of a rational expression it has to be times the whole numerator or denominator.  Thus, if we factor a minus out of the numerator then we could move it into the front of the rational expression as follows,

- x + 3 /x + 1 = - ( x - 3) / x + 1= -(x-3)/(x+1)

Here, the moral is that we have to be careful with moving minus signs around in rational expressions.

Now we need to move into adding, subtracting, multiplying & dividing rational expressions. Let's begin with multiplying & dividing rational expressions. The general formulas are such as,

 (a/b) ⋅ (c /d)= ac /b d 

 (a/b) /(c /d)=(a/b)÷(c/d)=(a/b).(d/c)

Note the two distinct forms for mentioning division.  We will employ either as required so ensure you are familiar with both. Notice as well that to do division of rational expressions all that we have to do is multiply the numerator by the reciprocal of the denominator (that means the fraction along with the numerator & denominator switched).

There are a couple of special cases of division that we have looked at.  Generally above both the numerator and the denominator of the rational expression where fractions, though, what if one of them isn't fraction.  Thus let's look at the following cases.

                                                       a/(c/d)          (a/b)/c        

Initially Students frequently make mistakes with these. To properly deal with these we will turn the numerator (first case) or denominator (second case) into fraction and then do the general division on them.

a/(c/d)=(a/1)/(c/d)=(a/1).(d/c)=(ad/c)

 (a/b)/c =(a/b)/(c/1)=(a/b).(1/c)=(a/bc)

Be careful with these cases. It is simple to make a mistake with this case and do the division incorrectly.


Related Discussions:- Reduce the rational expression to lowest terms

probability that the card is a 8 or an ace, A standard deck of cards conta...

A standard deck of cards contains 52 cards. One card is selected at random. Determine a)    The probability that the card is a 8 or an Ace? b)    The probability that the card is

Integrals involving quadratics - integration techniques, Integrals Involvin...

Integrals Involving Quadratics To this point we have seen quite some integrals which involve quadratics.  Example of Integrals Involving Quadratics is as follow: ∫ (x / x 2

Properties of dot product - proof, Properties of Dot Product - proof P...

Properties of Dot Product - proof Proof of: If v → • v → = 0 then v → = 0 → This is a pretty simple proof.  Let us start with v → = (v1 , v2 ,.... , vn) a

Determine the nand gate, Find out the two inputs when the NAND gate output ...

Find out the two inputs when the NAND gate output will be low. Ans. The output of NAND gate will be low if the two inputs are 11. The Truth Table of NAND gate is shown

Differentiation, Need Solution Find (dy)/( dx) for; (i). y = x 7 ...

Need Solution Find (dy)/( dx) for; (i). y = x 7 (ii). y = x 2γ (iii). y = x -3 (iv). y = x

Two bulbs are selected without replacement, A bag of 28 tulip bulbs contain...

A bag of 28 tulip bulbs contains 12 red tulip bulbs,7 purple tulip bulbs  and 9 yellow tulip bulbs,. Two bulbs are selected without replacement. Determine, a)    The probability t

Constructing tables versus rote learning maths, CONSTRUCTING TABLES VERSUS ...

CONSTRUCTING TABLES VERSUS ROTE LEARNING :  Ask any adult how she would help a child to acquire simple multiplication facts. There is a very strong possibility that she would say,

Venn diagram, in a class of 55 students, 35 take english, 40 take french, a...

in a class of 55 students, 35 take english, 40 take french, and 5 take other languages.present this information in a venn diagam and determine how many students take both languages

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd