Mapping of a fraction -windowing transformations, Computer Graphics

Assignment Help:

Mapping of a Fraction -Windowing Transformations

The mapping of a fraction of a world coordinate scene to device coordinates is considered to as Viewing Transformation. In common 2Dimentional viewing transformations are considered to as window to windowing transformation or viewport transformation.

1736_Mapping of a Fraction -Windowing Transformations 1.png

Figure: Windowing Transformation

We can see in above figure, here all parts of the picture which lie outside the window are clipped and the contents that lie within the widow are transferred to device coordinates. Secondly, we can also observe that while window chooses a part of the scene, viewport displays the chosen part at the desired location on the display region. While window is changed we see a dissimilar part of the scene at similar portion as viewport on display. If we modify the viewport only, we notice identical part of the scene drawn at a diverse scale or at a diverse place on the display. By successively decreasing or raising the size of the window around a part of the scene the viewport kept fixed, we can determine the effect of zoom out or in respectively on the displayed part. By mathematically, viewing transformation can be represented as V=W.N

Here,

  • V refers Viewing transformation that maps a part of world coordinate scene to device coordinates;
  • W refers to workstation transformation that maps normalized device coordinates to physical device coordinates;
  • N refers to Normalization transformation utilized to map world coordinates to normalized device coordinates.

 

Window to Viewpoint Coordinates transformation:

159_Mapping of a Fraction -Windowing Transformations 2.png

Figure: Window to Viewport Transformation

Figure as shown in above, demonstrates window-viewpoint mapping. Now, it is depicted here a point at position (Xw, Yw) in window is mapped on position (Xv, Yv) in the connected viewpoint.

Consequently, as to keep the same relative placement in the viewpoint like in the window we need:

   (xv - xvmin)/( xvmax  - xvmin)        =(xw - xwmin)/(xwmax  - xwmin)..............1(a)

   (yv - yvmin)/ (yvmax  - yvmin)       = (yw - ywmin)/(ywmax  - ywmin)................1(b)

Again arranging equation (a) and (b) of (1) we denote viewpoint position (xv, yv) which is:

{ xv = xvmin + (xw - xwmin) Sx

yv = yvmin + (yw - ywmin) Sy }..........................(2)

Here,

Sx scaling factor along x axis = (xvmax  - xvmin)/(xwmax  - xwmin)

Sy scaling factor along y axis = (yvmax  - yvmin)/(ywmax  - ywmin).........................................(3)

Note: if Sx = Sy then the relative proportions of objects are preserved else the world object will be contracted or stretched in either x or y direction while displayed on output device.


Related Discussions:- Mapping of a fraction -windowing transformations

Shearing - 2-d and 3-d transformations, Shearing - 2-D and 3-D transformati...

Shearing - 2-D and 3-D transformations Shearing transformations are utilized for altering the shapes of 2 or 3-D objects. The consequence of a shear transformation seems like

Describe the elements of design pattern, Question: (a) Using suitable ...

Question: (a) Using suitable examples, explain the following basic principles of design: (i) Proximity (ii) Repetition (iii) Contrast (iv) Alignment. (b) Color h

Categories of orthographic projection, Categories of Orthographic Projectio...

Categories of Orthographic Projection Orthographic projection is additionally divided into Multi-view projection and axonometric projection, depending upon where the direction

Transformation, Define transformation. Explain all basic transformation

Define transformation. Explain all basic transformation

Vertices of bezier curve find out 3 points on bezier curve, Specified p 0 ...

Specified p 0 (1, 1): p 1 (2, 3); p 2 (4, 3); p 3 (3, 1) as vertices of Bezier curve find out 3 points on Bezier curve? Solution : We consider Cubic Bezier curve as: P (

Transformation for 3-d scaling, Transformation for 3-D Scaling As we a...

Transformation for 3-D Scaling As we already seen that the scaling process is mainly utilized to change the size of an object. The scale factors find out whether the scaling i

Input and hardcopy devices - 2d shape primitives, Input and Hardcopy Device...

Input and Hardcopy Devices  This section gives a brief introduction to the functioning of some well known input and hardcopy devices. Input devices include keyboard, mouse, sca

Explain shannon -fano algorithm, (a) Differentiate between the following co...

(a) Differentiate between the following compression algorithm: 1. Shannon -Fano Algorithm and 2. Huffman Encoding (b) A statistical encoding algorithm is being considered

Xy-shear about the origin - 2-d and 3-d transformations, xy-Shear about the...

xy-Shear about the Origin - 2-d and 3-d transformations Suppose an object point P(x,y) be moved to P'(x',y') as a outcome of shear transformation in both x- and y-directions a

General perspective transformation with cop at the origin, General Perspect...

General Perspective transformation with COP at the origin Here we suppose the given point P(x,y,z) be projected like P'(x',y',z') on the plane of projection. The center of pro

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd