Introduction of 2-d and 3-d transformations, Computer Graphics

Introduction of 2-D and 3-D  Transformations

In this, the subsequent things have been discussed in detail as given below:

  • Different geometric transformations as translation, scaling, reflection, shearing and rotation.
  • Translation, Reflection and Rotation transformations are utilized to manipulate the specified object, where Shearing and Scaling both transformation changes their sizes.
  • Translation is the process of altering the position but not the shape/size, of an object with respect to the origin of the coordinate axes.
  • In 2-D rotation, an object is rotated via an angle θ. There are two cases of 2-Dimentional rotation: case1- rotation regarding to the origin and case2- rotation regarding to an arbitrary point. Consequently, in 2-D, a rotation is prescribed by an angle of rotation θ and a centre of rotation, as P. Conversely, in 3-D rotations, we require to mention the angle of rotation and the axis of rotation.
  • Scaling process is mostly utilized to change the shape or size of an object. The scale factors find out whether the scaling is a magnification, s>1 or a reduction as s<1.
  • Shearing transformation is a particular case of translation. The consequence of this transformation looks like "pushing" a geometric object in a direction which is parallel to a coordinate plane as 3D or a coordinate axis as 2D. How far a direction is pushed is found by its shearing factor.
  • Reflection is a transformation that generates the mirror image of an object. For reflection we require to know the reference axis or reference plane depending upon where the object is 2-D or 3-D.
  • Composite transformation engages more than one transformation concatenated in a particular matrix. Such process is also termed as concatenation of matrices. Any transformation made about an arbitrary point makes use of composite transformation as Rotation regarding to an arbitrary point, reflection regarding to an arbitrary line, and so on.
  • The utilization of homogeneous coordinate system to shows the translation transformation into matrix form, enlarges our N-coordinate system along with (N+1) coordinate system.
Posted Date: 4/3/2013 6:14:51 AM | Location : United States







Related Discussions:- Introduction of 2-d and 3-d transformations, Assignment Help, Ask Question on Introduction of 2-d and 3-d transformations, Get Answer, Expert's Help, Introduction of 2-d and 3-d transformations Discussions

Write discussion on Introduction of 2-d and 3-d transformations
Your posts are moderated
Related Questions
What are the advantages of Bresenham's line drawing algorithm over DDA line drawing algorithm? DDA and Bresenham algorithms both are efficient line drawing algorithm. Breaenham

Line Clipping Algorithm - Cohen Sutherland Algorithm Line is a series of endless number of points; here no two points contain space in among them. Hence, the above said inequa


Algorithms for filled-area primitives These algorithms are classified into two categories (i)  Scan line algorithms (ii) Seed fill algorithms.

I have an assignment to do & it''s due on Wednesday !

Problem: a. Provide examples of classification of print finishing processes. b. In advertising, what do you meant by creative strategies? c. Creative strategies are div


How avar values generate to get realistic movement There are numerous ways of generating avar values to get realistic movement. One way is to use markers on a real person (or w

What is rotation?  A 2-D rotation is completed by repositioning the coordinates with a circular path, in the x-y plane by making an angle with the axes. The transformation is g

Ask questionkms eey frame syst #Minimum 100 words accepted#