Initial value problems, math, Mathematics

Assignment Help:
Write a Matlab function MyIVP that solves an initial-value problem (IVP) for a system of ordinary
differential equations (ODEs) of the form
x ?(t) = f (t, x(t)),
where f : R × Rn ? Rn is an arbitrary function with one one-dimensional input (for time t) and one n-dimensional input x, and n-dimensional output. The function should implement a Runge-Kutta formula (for example, the rk34 formula or the Dormand & Prince formula).
The initial value x0 is provided by the user of MyIVP. The first line of MyIVP (saved in a file MyIVP.m) should look like this
function [xend,t,xt]=MyIVP(f,x0,tspan,N) Inputs
• f: function defining the right-hand side of the ODE. f should accept two arguments: t (a number) and x (an n-dimensional vector). The function f should return an n-dimensional vector y (the time derivative). Typical calling sequence: y=f(t,x), returning the value of f at time t in position x.
• x0: initial value where integration starts from (n-dimensional vector).
• tspan: Starting time and end time for integration. Integration has to run from time t =tspan(1)
to time t =tspan(2).
• N: number of steps for integration. The integration stepsize h=(tspan(2)-tspan(1))/N should
be small.
Outputs
• xend: result of integration at t =tspan(2).
• t: vector of times at which intermediate values have been computed (this should have N + 1
entries).
• xt: intermediate values (n × (N + 1)-array). xt(:,k) should be the solution at t(k).
You can check the built-in variable nargout inside your function to see if the user wants to get three outputs or only the end value xend. If nargout==1 you don’t need to store the intermediate values.

Related Discussions:- Initial value problems, math

Trigonometry, important trigonometric formulas for class 10th CBSC board

important trigonometric formulas for class 10th CBSC board

Chain rule, Chain Rule :   If f(x) and g(x) are both differentiable func...

Chain Rule :   If f(x) and g(x) are both differentiable functions and we describe F(x) = (f. g)(x) so the derivative of F(x) is F′(x) = f ′(g(x)) g′(x).  Proof We will s

Explain simple classification and chance and probability, E1) From your exp...

E1) From your experience, and what you have studied so far, by which age would-you expect an average child to be ready to acquire the following concepts? i) Simple classificatio

Constants of integration, CONSTANTS OF INTEGRATION Under this section w...

CONSTANTS OF INTEGRATION Under this section we require to address a couple of sections about the constant of integration. During most calculus class we play pretty quick and lo

Related to MCA, AskIf y=e^(a?sin?^(-1) x), prove that (1 – x2)yn+2 – (2n + ...

AskIf y=e^(a?sin?^(-1) x), prove that (1 – x2)yn+2 – (2n + 1)xyn+1 – (n2 + a2)yn = 0. Hence find the value of yn when x = 0. question #Minimum 100 words accepted#

Solve 6 sin ( x/2)= 1 on [-20, Solve 6 sin ( x/2)= 1 on [-20,30] Soluti...

Solve 6 sin ( x/2)= 1 on [-20,30] Solution Let's first work out calculator of the way since that isn't where the difference comes into play. sin( x/2)= 1/6   ⇒x/2= sin

two women may stand behind each othe, How many ways can six men and three ...

How many ways can six men and three women form a line if no two women may stand behind each other?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd