Initial value problems, math, Mathematics

Assignment Help:
Write a Matlab function MyIVP that solves an initial-value problem (IVP) for a system of ordinary
differential equations (ODEs) of the form
x ?(t) = f (t, x(t)),
where f : R × Rn ? Rn is an arbitrary function with one one-dimensional input (for time t) and one n-dimensional input x, and n-dimensional output. The function should implement a Runge-Kutta formula (for example, the rk34 formula or the Dormand & Prince formula).
The initial value x0 is provided by the user of MyIVP. The first line of MyIVP (saved in a file MyIVP.m) should look like this
function [xend,t,xt]=MyIVP(f,x0,tspan,N) Inputs
• f: function defining the right-hand side of the ODE. f should accept two arguments: t (a number) and x (an n-dimensional vector). The function f should return an n-dimensional vector y (the time derivative). Typical calling sequence: y=f(t,x), returning the value of f at time t in position x.
• x0: initial value where integration starts from (n-dimensional vector).
• tspan: Starting time and end time for integration. Integration has to run from time t =tspan(1)
to time t =tspan(2).
• N: number of steps for integration. The integration stepsize h=(tspan(2)-tspan(1))/N should
be small.
Outputs
• xend: result of integration at t =tspan(2).
• t: vector of times at which intermediate values have been computed (this should have N + 1
entries).
• xt: intermediate values (n × (N + 1)-array). xt(:,k) should be the solution at t(k).
You can check the built-in variable nargout inside your function to see if the user wants to get three outputs or only the end value xend. If nargout==1 you don’t need to store the intermediate values.

Related Discussions:- Initial value problems, math

Addition involving negative numbers, Q. Addition Involving Negative Numbers...

Q. Addition Involving Negative Numbers? Ans. When you add together positive and negative numbers, there are essentially three possibilities that you can encounter. Let's e

Evaluate integrals, Evaluate following integrals.  (a) ∫ 3e x + 5 cos x...

Evaluate following integrals.  (a) ∫ 3e x + 5 cos x -10 sec 2   x dx  (b) ( 23/ (y 2 + 1) + 6 csc y cot y + 9/ y dy Solution (a)    ∫ 3e x + 5 cos x -10 sec 2 x

Areas related to circles in mensuration, AREAS  RELATED TO CIRCLES The...

AREAS  RELATED TO CIRCLES The  mathematical  sciences particularly  exhibit  order,  symmetry,  and limitation;  and  these  are the  greatest  forms  of the beautiful. In t

Regression coefficient, 4x+3y+7=0 and 3x+4y+8=0 find the regression coeffic...

4x+3y+7=0 and 3x+4y+8=0 find the regression coefficient between bxy and byx.

General approach of exponential functions, General approach of Exponential ...

General approach of Exponential Functions : Before getting to this function let's take a much more general approach to things. Let's begin with b = 0 , b ≠ 1. Then an exponential f

Show that cos12+cos60+cos84=cos24+cos48 , L.H.S. =cos 12+cos 60+cos 84 =c...

L.H.S. =cos 12+cos 60+cos 84 =cos 12+(cos 84+cos 60) =cos 12+2.cos 72 . cos 12 =(1+2sin 18)cos 12 =(1+2.(√5 -1)/4)cos 12 =(1+.(√5 -1)/2)cos 12 =(√5 +1)/2.cos 12   R.H.S =c

Addition of like terms with same signs, Case 1: Suppose we are given...

Case 1: Suppose we are given expressions like 3abc and 7abc and asked to compute their sum. If this is the case we should not worry much. Because adding like exp

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd