Initial value problems, math, Mathematics

Assignment Help:
Write a Matlab function MyIVP that solves an initial-value problem (IVP) for a system of ordinary
differential equations (ODEs) of the form
x ?(t) = f (t, x(t)),
where f : R × Rn ? Rn is an arbitrary function with one one-dimensional input (for time t) and one n-dimensional input x, and n-dimensional output. The function should implement a Runge-Kutta formula (for example, the rk34 formula or the Dormand & Prince formula).
The initial value x0 is provided by the user of MyIVP. The first line of MyIVP (saved in a file MyIVP.m) should look like this
function [xend,t,xt]=MyIVP(f,x0,tspan,N) Inputs
• f: function defining the right-hand side of the ODE. f should accept two arguments: t (a number) and x (an n-dimensional vector). The function f should return an n-dimensional vector y (the time derivative). Typical calling sequence: y=f(t,x), returning the value of f at time t in position x.
• x0: initial value where integration starts from (n-dimensional vector).
• tspan: Starting time and end time for integration. Integration has to run from time t =tspan(1)
to time t =tspan(2).
• N: number of steps for integration. The integration stepsize h=(tspan(2)-tspan(1))/N should
be small.
Outputs
• xend: result of integration at t =tspan(2).
• t: vector of times at which intermediate values have been computed (this should have N + 1
entries).
• xt: intermediate values (n × (N + 1)-array). xt(:,k) should be the solution at t(k).
You can check the built-in variable nargout inside your function to see if the user wants to get three outputs or only the end value xend. If nargout==1 you don’t need to store the intermediate values.

Related Discussions:- Initial value problems, math

Algebra, Tom has five times as many marbles as Jim. together they have 42 m...

Tom has five times as many marbles as Jim. together they have 42 marbles. how many marbles does each has?

Least cost method in operations research, algorithm and numerical examples ...

algorithm and numerical examples of least cost method

Distance traveled, a) Determine the distance traveled among t = 0 and  t =∏...

a) Determine the distance traveled among t = 0 and  t =∏/2 by a particle P(x, y) whose position at time t is given by Also check your result geometrically.  (5) b) D

Differentiate the equation x = x (t ) and y = y (t ) , Suppose that x = x (...

Suppose that x = x (t ) and y = y (t ) and differentiate the following equation with respect to t. Solution                                         x 3 y 6 + e 1- x - cos (5

D, #quwhat is4 5/7 of 2/3estion..

#quwhat is4 5/7 of 2/3estion..

Demonstrate that dijkstra algorithm - digraph, Demonstrate that Dijkstra's ...

Demonstrate that Dijkstra's algorithm does not necessarily work if some of the costs are negative by finding a digraph with negative costs (but no negative cost dicircuits) for whi

Solid mensuration, a circle is circumscribed about an equilateral triangle ...

a circle is circumscribed about an equilateral triangle whose side is 3 cm. find the area of the circle.

Algebra 1, how do you factor a trinomial into a binomial ?

how do you factor a trinomial into a binomial ?

Maths for fun-mathematics- in our lives, Maths For Fun :  Often, when I ha...

Maths For Fun :  Often, when I have time on my hands, I try to solve interesting mathematical questions of the following kind. Sometimes my friends and I create the problems, and

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd