Homogeneous coordinate systems - 2-d and 3-d transformations, Computer Graphics

Homogeneous Coordinate Systems - 2-d and 3-d transformations

Suppose P(x,y) be any point in 2-D Euclidean (Cartesian) system. In HC System, we add a third coordinate to a point. In place of (x,y), all points are represented via a triple (x,y,H) where H≠0;  along with the condition which is (x1,y1,H1)=(x2,y2,H2) ↔ x1/H1 = x2/H2 ; y1/H1 = y2/H2.

Currently, if we take H=0, then we contain point at infinity, that is, generation of horizons.

Hence, (2, 3, 6) and (4, 6, 12) are the similar points are represented by various coordinate triples, that is each point has many diverse Homogeneous Coordinate representation.

2-D Euclidian System                    Homogeneous Coordinate System

Any point (x,y)                                  (x,y,1)

 

If (x,y,H) be any point in HCS(such that H≠0); Then (x,y,H)=(x/H,y/H,1)

(x/H,y/H)                          (x,y,H)

Currently, we are in the position to build the matrix form for the translation along with the utilization of homogeneous coordinates.For translation transformation (x,y)→(x+tx,y+ty) within Euclidian system, here tx and ty both are the translation factor in direction of x and y respectively. Unfortunately, this manner of illustrating translation does not utilize a matrix; consequently it cannot be combined along with other transformations by easy matrix multiplication. That type of combination would be desirable; for illustration, we have observed that rotation about an arbitrary point can be done via a rotation, a translation and the other translation. We would like to be capable to combine these three transformations in a particular transformation for the sake of elegance and efficiency. One way of doing such, is to utilize homogeneous coordinates. In homogeneous coordinates we utilize 3x3 matrices in place of 2x2, initiating an additional dummy coordinate H. In place of (x,y), each point is demonstrated by a triple (x,y,H) here H≠0; In two dimensions the value of H is generally set at 1 for simplicity.

Hence, in homogeneous coordinate systems (x,y,1) → (x+tx,y+ty,1), now, we can simplifies this in matrix form like:

1389_Homogeneous Coordinate Systems - 2-d and 3-d transformations.png

Posted Date: 4/3/2013 5:55:16 AM | Location : United States







Related Discussions:- Homogeneous coordinate systems - 2-d and 3-d transformations, Assignment Help, Ask Question on Homogeneous coordinate systems - 2-d and 3-d transformations, Get Answer, Expert's Help, Homogeneous coordinate systems - 2-d and 3-d transformations Discussions

Write discussion on Homogeneous coordinate systems - 2-d and 3-d transformations
Your posts are moderated
Related Questions
Bresenham Line Generation Algorithm for Positive Slope (BLD algorithm for positive slope (0 - If slope is negative then utilize reflection transformation to transform the

Question 1: (a) The studio provides a perfect environment for various types of video production where precise control is necessary. Discuss. (b) Studio lighting is an import

Cohen Sutherland Line Clippings Algorithm The clipping problem is identified by dividing the region surrounding the window area into four segments Up as U, Down as D, Left as

Photo Editing Photo-editing programs are paint programs: it just like they comprise several sophisticated functions for altering images and for scheming aspects of the image,

What is run length encoding?   Run length encoding is a compression method used to store the intensity values in the frame buffer, which keeps each scan line as a set of intege


Magnify a triangle with vertices A = (1,1), B = (3,1) and C = (2,2) to twice its size in such a way that A remains in its original position.  Answer: You need to apply scaling b

What is Transformation?  Transformation is the process of introducing changes in the shape size and orientation of the object using scaling rotation reflection shearing & trans

Homogeneous Coordinate Systems - 2-d and 3-d transformations Suppose P(x,y) be any point in 2-D Euclidean (Cartesian) system. In HC System, we add a third coordinate to a poin

Principal vanishing point write respect to y-axis By the 2nd Row of the matrix as in Equation, the principal vanishing point w.r.t y-axis will as: (0, 5/√2, 0, 1/√2) in hom