Homogeneous coordinate systems - 2-d and 3-d transformations, Computer Graphics

Assignment Help:

Homogeneous Coordinate Systems - 2-d and 3-d transformations

Suppose P(x,y) be any point in 2-D Euclidean (Cartesian) system. In HC System, we add a third coordinate to a point. In place of (x,y), all points are represented via a triple (x,y,H) where H≠0;  along with the condition which is (x1,y1,H1)=(x2,y2,H2) ↔ x1/H1 = x2/H2 ; y1/H1 = y2/H2.

Currently, if we take H=0, then we contain point at infinity, that is, generation of horizons.

Hence, (2, 3, 6) and (4, 6, 12) are the similar points are represented by various coordinate triples, that is each point has many diverse Homogeneous Coordinate representation.

2-D Euclidian System                    Homogeneous Coordinate System

Any point (x,y)                                  (x,y,1)

 

If (x,y,H) be any point in HCS(such that H≠0); Then (x,y,H)=(x/H,y/H,1)

(x/H,y/H)                          (x,y,H)

Currently, we are in the position to build the matrix form for the translation along with the utilization of homogeneous coordinates.For translation transformation (x,y)→(x+tx,y+ty) within Euclidian system, here tx and ty both are the translation factor in direction of x and y respectively. Unfortunately, this manner of illustrating translation does not utilize a matrix; consequently it cannot be combined along with other transformations by easy matrix multiplication. That type of combination would be desirable; for illustration, we have observed that rotation about an arbitrary point can be done via a rotation, a translation and the other translation. We would like to be capable to combine these three transformations in a particular transformation for the sake of elegance and efficiency. One way of doing such, is to utilize homogeneous coordinates. In homogeneous coordinates we utilize 3x3 matrices in place of 2x2, initiating an additional dummy coordinate H. In place of (x,y), each point is demonstrated by a triple (x,y,H) here H≠0; In two dimensions the value of H is generally set at 1 for simplicity.

Hence, in homogeneous coordinate systems (x,y,1) → (x+tx,y+ty,1), now, we can simplifies this in matrix form like:

1389_Homogeneous Coordinate Systems - 2-d and 3-d transformations.png


Related Discussions:- Homogeneous coordinate systems - 2-d and 3-d transformations

Achieve a perspective projection on the plane of unit cube, Achieve a persp...

Achieve a perspective projection on the z = 0 plane of the unit cube, demonstrated in Figure (l) from the cop at E (0, 0, 10) upon the z-axis. Figure: I 01:  currently c

Trivial acceptance case of cohen sutherland line clippings, Trivial accepta...

Trivial acceptance case of cohen sutherland line clippings Case 1: it is Trivial acceptance case whether the UDLR bit codes of the end points P, Q of a provided line is 0000

Containment test - visible surface detection, Containment Test -  visible s...

Containment Test -  visible surface detection Test: That is Containment test: it can be either comprised (contained) or surrounding polygon, if intersection test fails. The

Scan conversion, State the purpose of scan conversion , along with the side...

State the purpose of scan conversion , along with the side effects

Multimedia tool features, Multimedia Tool Features General to nearly a...

Multimedia Tool Features General to nearly all multimedia tool platforms are various features for encapsulating the content, presenting the data, acquiring user input and cont

Use of interactive multimedia in education, Use of Interactive Multimedia i...

Use of Interactive Multimedia in Education Virtual reality, where 3-D experimental training can simulate real situations. Computer simulations of things too expensive,

Plasma panel - raster graphics and clipping, Plasma Panel - Raster Graphics...

Plasma Panel - Raster Graphics and Clipping This is an inherent memory device. Images can be written into the surface point by point and they keep stable, without flicked for

Three dimensional transformations, Three Dimensional Transformations A ...

Three Dimensional Transformations A 3D geometric transformation is used extensively in object modelling and rendering.2D transformations are naturally extended to 3D situations

Vanishing point - viewing transformations, Vanishing Point - Viewing Transf...

Vanishing Point - Viewing Transformations This point is that point at those parallel lines shows to converge and vanish. A practical illustration is a long straight railroad

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd