Homogeneous coordinate systems - 2-d and 3-d transformations, Computer Graphics

Assignment Help:

Homogeneous Coordinate Systems - 2-d and 3-d transformations

Suppose P(x,y) be any point in 2-D Euclidean (Cartesian) system. In HC System, we add a third coordinate to a point. In place of (x,y), all points are represented via a triple (x,y,H) where H≠0;  along with the condition which is (x1,y1,H1)=(x2,y2,H2) ↔ x1/H1 = x2/H2 ; y1/H1 = y2/H2.

Currently, if we take H=0, then we contain point at infinity, that is, generation of horizons.

Hence, (2, 3, 6) and (4, 6, 12) are the similar points are represented by various coordinate triples, that is each point has many diverse Homogeneous Coordinate representation.

2-D Euclidian System                    Homogeneous Coordinate System

Any point (x,y)                                  (x,y,1)

 

If (x,y,H) be any point in HCS(such that H≠0); Then (x,y,H)=(x/H,y/H,1)

(x/H,y/H)                          (x,y,H)

Currently, we are in the position to build the matrix form for the translation along with the utilization of homogeneous coordinates.For translation transformation (x,y)→(x+tx,y+ty) within Euclidian system, here tx and ty both are the translation factor in direction of x and y respectively. Unfortunately, this manner of illustrating translation does not utilize a matrix; consequently it cannot be combined along with other transformations by easy matrix multiplication. That type of combination would be desirable; for illustration, we have observed that rotation about an arbitrary point can be done via a rotation, a translation and the other translation. We would like to be capable to combine these three transformations in a particular transformation for the sake of elegance and efficiency. One way of doing such, is to utilize homogeneous coordinates. In homogeneous coordinates we utilize 3x3 matrices in place of 2x2, initiating an additional dummy coordinate H. In place of (x,y), each point is demonstrated by a triple (x,y,H) here H≠0; In two dimensions the value of H is generally set at 1 for simplicity.

Hence, in homogeneous coordinate systems (x,y,1) → (x+tx,y+ty,1), now, we can simplifies this in matrix form like:

1389_Homogeneous Coordinate Systems - 2-d and 3-d transformations.png


Related Discussions:- Homogeneous coordinate systems - 2-d and 3-d transformations

Interactive computer animation, Interactive Computer Animation Interac...

Interactive Computer Animation Interactive Computer Animation that is interactively utilized by users for example: games. Sprite animation is interactive and utilized broadly

Different types of simulating motion - computer animation, Different types ...

Different types of Simulating Motion - Computer Animation Here we discuss different ways of simulating motion as: a. Zero Acceleration or Constant Speed b. No

Procedural animation - computer animation, Procedural Animation - Computer ...

Procedural Animation - Computer Animation This category of animation is utilized to produce real time animation that permits a more diverse series of actions to occur. These a

Methods of animation - computer animation, Methods of Animation - Computer ...

Methods of Animation - Computer Animation First method: in this, artist makes a succession of cartoon frames that are then combined in a film. Second method: in this,

Image - based rendering, Explore and understand light field. Checking out o...

Explore and understand light field. Checking out one of the image libraries. 1. You can modify existing source code, or develop your own to achieve light field rendering; 2.

Line drawing display - random scan display device, Line Drawing Display - R...

Line Drawing Display - Random Scan Display Device The display through this system is termed as Line Drawing Display. The sequence controls the subsequent stages, demonstrated

Principal vanishing point write respect to z-axis, Principal vanishing poin...

Principal vanishing point write respect to Z-axis Principal vanishing point w.r.t z-axis: By the 3rd row of matrix equation, we declare that the principal vanishing point w

What is polygon mesh, What is Polygon mesh?  Polygon mesh is a method t...

What is Polygon mesh?  Polygon mesh is a method to show the polygon, when the object surfaces are tiled, it is more convenient to state the surface facets with a mesh function.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd