Homogeneous coordinate systems - 2-d and 3-d transformations, Computer Graphics

Homogeneous Coordinate Systems - 2-d and 3-d transformations

Suppose P(x,y) be any point in 2-D Euclidean (Cartesian) system. In HC System, we add a third coordinate to a point. In place of (x,y), all points are represented via a triple (x,y,H) where H≠0;  along with the condition which is (x1,y1,H1)=(x2,y2,H2) ↔ x1/H1 = x2/H2 ; y1/H1 = y2/H2.

Currently, if we take H=0, then we contain point at infinity, that is, generation of horizons.

Hence, (2, 3, 6) and (4, 6, 12) are the similar points are represented by various coordinate triples, that is each point has many diverse Homogeneous Coordinate representation.

2-D Euclidian System                    Homogeneous Coordinate System

Any point (x,y)                                  (x,y,1)

 

If (x,y,H) be any point in HCS(such that H≠0); Then (x,y,H)=(x/H,y/H,1)

(x/H,y/H)                          (x,y,H)

Currently, we are in the position to build the matrix form for the translation along with the utilization of homogeneous coordinates.For translation transformation (x,y)→(x+tx,y+ty) within Euclidian system, here tx and ty both are the translation factor in direction of x and y respectively. Unfortunately, this manner of illustrating translation does not utilize a matrix; consequently it cannot be combined along with other transformations by easy matrix multiplication. That type of combination would be desirable; for illustration, we have observed that rotation about an arbitrary point can be done via a rotation, a translation and the other translation. We would like to be capable to combine these three transformations in a particular transformation for the sake of elegance and efficiency. One way of doing such, is to utilize homogeneous coordinates. In homogeneous coordinates we utilize 3x3 matrices in place of 2x2, initiating an additional dummy coordinate H. In place of (x,y), each point is demonstrated by a triple (x,y,H) here H≠0; In two dimensions the value of H is generally set at 1 for simplicity.

Hence, in homogeneous coordinate systems (x,y,1) → (x+tx,y+ty,1), now, we can simplifies this in matrix form like:

1389_Homogeneous Coordinate Systems - 2-d and 3-d transformations.png

Posted Date: 4/3/2013 5:55:16 AM | Location : United States







Related Discussions:- Homogeneous coordinate systems - 2-d and 3-d transformations, Assignment Help, Ask Question on Homogeneous coordinate systems - 2-d and 3-d transformations, Get Answer, Expert's Help, Homogeneous coordinate systems - 2-d and 3-d transformations Discussions

Write discussion on Homogeneous coordinate systems - 2-d and 3-d transformations
Your posts are moderated
Related Questions
Cases of clip a line segment-pq Case 1: As we determine a new value of t E that is value of parameter t for any potentially entering (PE) point we select t max as:  t max

Non-Zero Accelerations - Computer Animation This method of simulating the motion is fairly helpful introducing the realistic displays of speed changes, particularly at the sta

What is the feature of Inkjet printers? Features of inkjet printers: They can print 2 to 4 pages/minutes. Resolution is about 360d.p.i. Thus better print quality is achie

List out the merits of Plasma panel display?  Merits  Refreshing is not needed Produce a very steady image free of Flicker Less bulky than a CRT. Demerits

Transformation for Isometric projection - Transformation Suppose that P(x,y,z) be any point in a space.  Assume as a given point P(x,y,z) is projected to the P'(x'y',z') on t

Plasma Panel - Raster Graphics and Clipping This is an inherent memory device. Images can be written into the surface point by point and they keep stable, without flicked for

Distinguish between uniform scaling and differential scaling?  When the scaling factors sx and sy are assigned to the similar value, a uniform scaling is produced that maintain


The goal of this assignment is to implement procedures/functions using x86 assembly. In addition to implementing procedures/functions, this assignment requires to pass arguments us

Object Oriented Tools: In such authoring systems, multimedia components and events turn into objects that live in hierarchical order of parent and child relations. Messages are pa