Graphical understanding of derivatives, Mathematics

Graphical Understanding of Derivatives:

A ladder 26 feet long is leaning against a wall. The ladder begins to move such that the bottom end moves away from the wall at a constant velocity of 2 feet by per second.   What is the downward velocity of the top end of the ladder when the bottom end is 10 feet from the wall?


Begin with the Pythagorean Theorem for a right triangle:     a2 = c2 - b2

Obtain the derivative of both sides of this equation with respect to time t.  The c, representing the length of the ladder is a constant.

2a(da/dt) = -2b(db/dt)

a(da/dt) = -b (db/dt)

But, db/dt is the velocity at that the bottom end of the ladder is moving  away  from  the  wall,  equal  to  2  ft/s,  and  da/dt  is  the downward  velocity  of the top end of the ladder  along  the wall, that is the quantity  to be determined.  Set b equal to 10 feet, substitute the known values into the equation, and solve for a.

a2 = c2 - b2


2442_Graphical Understanding of Derivatives.png

a= 24 ft

a(da/dt) = -b (db/dt)

(da/dt) = -b/a (db/dt)

(da/dt) = -10 ft/24 ft(2 ft/s)

(da/dt) = -0.833 ft/s

Therefore, when the bottom of the ladder is 10 feet from the wall and moving at 2ft/sec., the top of the ladder is moving downward at 0.833 ft/s. (The negative sign denotes the downward direction.)

Posted Date: 2/11/2013 1:04:24 AM | Location : United States

Related Discussions:- Graphical understanding of derivatives, Assignment Help, Ask Question on Graphical understanding of derivatives, Get Answer, Expert's Help, Graphical understanding of derivatives Discussions

Write discussion on Graphical understanding of derivatives
Your posts are moderated
Related Questions
1.If a+b=2b and ab+cd+ad=3bc,prove that a,b,c,d are in A.P 2.The nth term of an A.P is an+b.Find the sum of the series upto n terms.

A polynomial satisfies the following relation f(x).f(1/x)= f(x)+f(1/x). f(2) = 33. fIND f(3) Ans) The required polynomial is x^5 +1. This polynomial satisfies the condition state

Teng is designing a house and in each room he can choose from tiles, floorboards, or carpet for the floor. a. How many combinations of flooring materials are possible if he designs

Five cards - the ten, jack, queen, king and ace, are well shuffled with their face downwards. One card is then picked up at random. (i)  What is the probability that the card is

Kevin ran 6.8 miles yesterday and 10.4 miles presently. How many more miles did he run today? To ?nd out how many more miles he ran today, subtract yesterday's miles from today

If two vertices of an equilateral triangle are (0, 0) and (3, 0), find the third vertex. [Ans: 3/2 , 3/√ 3/2  or 3/2, -3√ 3/2] Ans:    OA = OB = AB OA 2 = OB 2 = AB 2

Example of Implicit differentiation So, now it's time to do our first problem where implicit differentiation is required, unlike the first example where we could actually avoid

Data entry is performed in 2-person teams. Each 2-person team can enter 520 surveys per day. A selection of 7540 surveys must be entered by day''s end. How many total employees, wo

write and solve a problem of multiplacation that uses: estimate explaning numbers picturs and another operation?