Graphical understanding of derivatives, Mathematics

Assignment Help:

Graphical Understanding of Derivatives:

A ladder 26 feet long is leaning against a wall. The ladder begins to move such that the bottom end moves away from the wall at a constant velocity of 2 feet by per second.   What is the downward velocity of the top end of the ladder when the bottom end is 10 feet from the wall?

Solution:

Begin with the Pythagorean Theorem for a right triangle:     a2 = c2 - b2

Obtain the derivative of both sides of this equation with respect to time t.  The c, representing the length of the ladder is a constant.

2a(da/dt) = -2b(db/dt)

a(da/dt) = -b (db/dt)

But, db/dt is the velocity at that the bottom end of the ladder is moving  away  from  the  wall,  equal  to  2  ft/s,  and  da/dt  is  the downward  velocity  of the top end of the ladder  along  the wall, that is the quantity  to be determined.  Set b equal to 10 feet, substitute the known values into the equation, and solve for a.

a2 = c2 - b2

 

2442_Graphical Understanding of Derivatives.png

a= 24 ft

a(da/dt) = -b (db/dt)

(da/dt) = -b/a (db/dt)

(da/dt) = -10 ft/24 ft(2 ft/s)

(da/dt) = -0.833 ft/s

Therefore, when the bottom of the ladder is 10 feet from the wall and moving at 2ft/sec., the top of the ladder is moving downward at 0.833 ft/s. (The negative sign denotes the downward direction.)


Related Discussions:- Graphical understanding of derivatives

Exponential smoothing, Exponential smoothing It is a weighted moving a...

Exponential smoothing It is a weighted moving average technique, this is described by: New forecast = Old forecast + a (Latest Observation - Old forecast) Whereas a = Sm

Problem on numbers, # In a two-digit, if it is known that its unit''s digi...

# In a two-digit, if it is known that its unit''s digit exceeds its ten''s digit by 2 and that the product of the given number and the sum of its digits is equal to 144, then the

Homogeneous system , Provided a homogeneous system of equations (2), we wil...

Provided a homogeneous system of equations (2), we will have one of the two probabilities for the number of solutions. 1.   Accurately one solution, the trivial solution 2.

Quadratic equations, Q UADRATIC EQUATIONS: For  the  things  of this  wor...

Q UADRATIC EQUATIONS: For  the  things  of this  world  cannot  be  made  known without  a  knowledge of mathematics. Solve by factorization a.    4x 2 - 4a 2 x +

Accuray and Precision, If an instrument has precision of +-1, can it detect...

If an instrument has precision of +-1, can it detect a value of 1.3?

Find the sum of given equation upto n limit, Find the sum of (1 - 1/n ) + (...

Find the sum of (1 - 1/n ) + (1 - 2/n ) + (1 - 3/n ) ....... upto n terms. Ans: (1 - 1/n ) + (1 - 2/n ) - upto n terms   ⇒[1+1+.......+n terms] - [ 1/n + 2/n +....+

Adding fractions with the same denominator, Q. Adding Fractions with the Sa...

Q. Adding Fractions with the Same Denominator? Adding fractions with the same denominator is easy- you add the numerators (the tops), and you leave the denominator alone!

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd