Prove gcd value, Mathematics

Assignment Help:

Let a, b, c 2 Z+.

(a) Prove that if a|b, then ac|bc for all c.

(b) If a|bc, can you conclude that either a|b or a|c? Justify your answer with a proof or a counter example.

(c) Prove that gcd(a, a + b) = gcd(a, b).

 


Related Discussions:- Prove gcd value

Average, A boy covered half of distance at 20km/hr and rest at 40kmlhr. cal...

A boy covered half of distance at 20km/hr and rest at 40kmlhr. calculate his average speed.

What is the objective of lipids metabolism, What is the objective of lipids...

What is the objective of lipids metabolism ? After studying this unit, you will be able to: 1. explain how fatty acids are oxidized for the production of energy, 2. describe

Sum of a number of terms in g.p., We know that the terms in G.P. are:...

We know that the terms in G.P. are: a, ar, ar 2 , ar 3 , ar 4 , ................, ar n-1 Let s be the sum of these terms, then s = a + ar + ar 2

Determine that the following series is convergent or diverge, Determine or ...

Determine or find out if the following series is convergent or divergent. Solution In this example the function we'll use is, f (x) = 1 / (x ln x) This function is

Differential equation and laplace transform, 1. Solve the given differentia...

1. Solve the given differential equation, subject to the initial conditions: . x2y''-3xy'+4y = 0 . y(1) = 5, y'(1) = 3 2. Find two linearly independent power series soluti

Rules of logarithms, Rule 1 The logarithm of 1 to any base is 0. Pro...

Rule 1 The logarithm of 1 to any base is 0. Proof We know that any number raised to zero equals 1. That is, a 0 = 1, where "a" takes any value. Therefore, the loga

Theorem of continuous functions, Consider the subsequent IVP. y' = f(t,y...

Consider the subsequent IVP. y' = f(t,y) ,        y(t 0 ) = y 0 If f(t,y) and ∂f/∂y are continuous functions in several rectangle a o - h o + h which is included in a

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd