SYSTEMS OF ODE, Mathematics

Assignment Help:
Problem 1 Let ~x0 = A~x and y
0 = B~y be two 2  2 linear systems of ODE.
(1) Suppose that A and B have the same purely imaginary eigenvalues. Prove that these systems
are topologically conjugate.
(2) Suppose that A and B have di erent purely imaginary eigenvalues. Prove that the ODE
systems are not topologically conjugate.
(3) Suppose A has eigenvalues 0,  and B has eigenvalues 0, . Prove theta the ODE systems are
topologically conjugate if and only if and  have the same sign.
(4) Prove that if A has purely imaginary eigenvalues, and B has real eigenvalues, then the ODE
systems are not topologically conjugate.
(5) Use the information above as well as the theorems from class to provide complete classi cation
of dynamics two-dimensional linear systems of ODE by conjugacy

Related Discussions:- SYSTEMS OF ODE

Collecting and interpreting data, Q. How to Collecting and interpreting dat...

Q. How to Collecting and interpreting data? Ans. Collecting and interpreting data is the most important job of a statistician. There are many types of studies and differe

Credit and invoice, mr ouma bought two sets of spanners for sh 300per set ...

mr ouma bought two sets of spanners for sh 300per set two machanic vice at sh 1000each three set of screw driver at sh 115 per set and tool box for sh 300

Evaluate the volume of the shaded region, If the hight of pipe is 18 inches...

If the hight of pipe is 18 inches, what is the volume of the shaded region in terms of π? a. 31.5π in 3 b. 126π in 3 c. 157.5 in 3 d. 58.5 in 3

Sketch the hyperbolic spiral-spiral of archimedes, 1. Sketch the Spiral of ...

1. Sketch the Spiral of Archimedes: r= aθ (a>0) ? 2: Sketch the hyperbolic Spiral: rθ = a (a>0) ? 3: Sketch the equiangular spiral: r=ae θ (a>0) ?

#algebra 2 .., encoded with the matrix -3 -7 and 4 9. what lights up a socc...

encoded with the matrix -3 -7 and 4 9. what lights up a soccer stadium? ecoded message: {-3 - 7} {3 2 } {3 6} {57 127} {52 127} {77 173} {23 51)

Graphical understanding of derivatives, Graphical Understanding of Derivati...

Graphical Understanding of Derivatives: A ladder 26 feet long is leaning against a wall. The ladder begins to move such that the bottom end moves away from the wall at a const

Theorem of reduction of order, In this theorem we identify that for a speci...

In this theorem we identify that for a specified differential equation a set of fundamental solutions will exist. Consider the differential equation  y′′ + p (t ) y′ + q (t

Find the area enclosed between two concentric circles, Find the area enclos...

Find the area enclosed between two concentric circles of radii 3.5cm, 7cm. A third  concentric circle is drawn outside the 7cm circle so that the area enclosed between it and the 7

Laplace transforms, As we saw in the previous section computing Laplace tra...

As we saw in the previous section computing Laplace transforms directly can be quite complex. Generally we just utilize a table of transforms when actually calculating Laplace tran

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd