Fermats theorem, Mathematics

Assignment Help:

Fermat's Theorem

 If f(x) has a relative extrema at x = c and f′(c) exists then x = c is a critical point of f(x). Actually, this will be a critical point that f′(c) =0.

 Proof

It is a fairly easy proof.  We will suppose that f(x) has a relative maximum to do the proof.

 The proof for a relative minimum is nearly the same. Therefore, if we suppose that we have a relative maximum at x = c after that we know that f(c) ≥ f(x) for all x which are sufficiently close to x = c.

 Particularly for all h which are sufficiently close to zero may be positive or negative we must contain,

f(c) ≥ f(c + h)

or, with a little rewrite we should have,

f(c + h) - f(c) < 0                                             (1)

Now, here suppose that h > 0 and divide both sides of (1) with h. It provides,

(f(c + h) - f(c))/h < 0

Since we're assuming that h > 0 we can here take the right-hand limit of both sides of such.

= limh0¯  (f(c + h) - f(c))/h < limh0¯ 0 = 0

We are also assume that f′(c) exists and recall this if a general limit exists then this should be equal to both one-sided limits. We can so say that,

f′(c) = limh0¯  (f(c + h) - f(c))/h = limh0¯  (f(c + h) - f(c))/h < 0

If we place this together we have here demonstrated that, f′(c) ≤ 0 .

Fine, now let's turn things around and suppose that h < 0 provides,and divide both sides of (1) with h. It  gives

(f(c + h) - f(c))/h > 0

Keep in mind that as we're assuming h < 0 we will require to switch the inequality while we divide thorugh a negative number. We can here do a same argument as above to find that,

f′(c) = limh0 (f(c + h) - f(c))/h = limh0¯  (f(c + h) - f(c))/h >   limh0¯ 0 = 0

The difference now is that currently we're going to be considering at the left-hand limit as we're assuming that h < 0 . This argument illustrates that f′(c) ≥ 0 .

 We've now shown that

 f′(c) ≤ 0 and f′(c)  ≥ 0. So only way both of such can be true at similar time is to have f′(c) = 0 and it means that x = c must be a critical point.

 As considered above, if we suppose that f(x) has a relative minimum then the proof is nearly  the same and therefore isn't illustraten here. The major differences are simply several inequalities require to be switched.


Related Discussions:- Fermats theorem

Determines the possibility, There is a committee to be selected comprising ...

There is a committee to be selected comprising of 5 people from a group of 5 men and 6 women. Whether the selection is randomly done then determines the possibility of having the g

What difference among the areas of the two sections of a, If the areas of t...

If the areas of two sections of a garden are 6a + 2 and 5a, what is the difference among the areas of the two sections within terms of a? Because the question asks for the diff

Determine an actual explicit solution, Determine an actual explicit solutio...

Determine an actual explicit solution to y′ = t/y; y(2) = -1. Solution : We already identify by the previous illustration that an implicit solution to this IVP is y 2 = t 2 -

Probability, joey asked 30 randomly selected students if they drank milk, j...

joey asked 30 randomly selected students if they drank milk, juice, or bottled water with their lunch. He found that 9 drank milk, 16 drank juice, and 5 drank bottled water. If the

What is the total number of pounds they bought if the total, The student co...

The student council bought two various kinds of candy for the school fair. They purchased 40 pounds of candy at $2.15 per pound and x pounds at $1.90 per pound. What is the total n

Properties of logarithms, Properties of Logarithms 1. log a x...

Properties of Logarithms 1. log a xy = log a x + log a y 2.  = log a x - log a y 3. log a x n   = n log

Dumpy level, Hi there, I am doing a math assignment at current, however I a...

Hi there, I am doing a math assignment at current, however I am having trouble with a question about dumpy level, and finding whether the slope of the block will be suitable for th

Homework, How do you simplify 10:30:45

How do you simplify 10:30:45

Prove that its inclination is given by cot = b cot - a, Two stations due...

Two stations due south of a leaning tower which leans towards the north are at distances a and b from its foot.  If α ,  β be the elevations of the top of the tower from these

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd