Fermats theorem, Mathematics

Assignment Help:

Fermat's Theorem

 If f(x) has a relative extrema at x = c and f′(c) exists then x = c is a critical point of f(x). Actually, this will be a critical point that f′(c) =0.

 Proof

It is a fairly easy proof.  We will suppose that f(x) has a relative maximum to do the proof.

 The proof for a relative minimum is nearly the same. Therefore, if we suppose that we have a relative maximum at x = c after that we know that f(c) ≥ f(x) for all x which are sufficiently close to x = c.

 Particularly for all h which are sufficiently close to zero may be positive or negative we must contain,

f(c) ≥ f(c + h)

or, with a little rewrite we should have,

f(c + h) - f(c) < 0                                             (1)

Now, here suppose that h > 0 and divide both sides of (1) with h. It provides,

(f(c + h) - f(c))/h < 0

Since we're assuming that h > 0 we can here take the right-hand limit of both sides of such.

= limh0¯  (f(c + h) - f(c))/h < limh0¯ 0 = 0

We are also assume that f′(c) exists and recall this if a general limit exists then this should be equal to both one-sided limits. We can so say that,

f′(c) = limh0¯  (f(c + h) - f(c))/h = limh0¯  (f(c + h) - f(c))/h < 0

If we place this together we have here demonstrated that, f′(c) ≤ 0 .

Fine, now let's turn things around and suppose that h < 0 provides,and divide both sides of (1) with h. It  gives

(f(c + h) - f(c))/h > 0

Keep in mind that as we're assuming h < 0 we will require to switch the inequality while we divide thorugh a negative number. We can here do a same argument as above to find that,

f′(c) = limh0 (f(c + h) - f(c))/h = limh0¯  (f(c + h) - f(c))/h >   limh0¯ 0 = 0

The difference now is that currently we're going to be considering at the left-hand limit as we're assuming that h < 0 . This argument illustrates that f′(c) ≥ 0 .

 We've now shown that

 f′(c) ≤ 0 and f′(c)  ≥ 0. So only way both of such can be true at similar time is to have f′(c) = 0 and it means that x = c must be a critical point.

 As considered above, if we suppose that f(x) has a relative minimum then the proof is nearly  the same and therefore isn't illustraten here. The major differences are simply several inequalities require to be switched.


Related Discussions:- Fermats theorem

Find out height of the box which will give maximum volume, We contain a pie...

We contain a piece of cardboard i.e. 14 inches by 10 inches & we're going to cut out the corners as illustrates below and fold up the sides to form a box, also illustrated below. F

Find the third vertex of equilateral triangle, If two vertices of an equila...

If two vertices of an equilateral triangle are (0, 0) and (3, 0), find the third vertex. [Ans: 3/2 , 3/√ 3/2  or 3/2, -3√ 3/2] Ans:    OA = OB = AB OA 2 = OB 2 = AB 2

Time series and analysis, Time Series and Analysis It is the statistic...

Time Series and Analysis It is the statistical or mathematical analysis on past data arranged in a periodic sequence. Decision making and planning in an organization includes

Describe the properties of inequalities, Describe the Properties of Inequal...

Describe the Properties of Inequalities ? Postulate In comparing two quantities, say a and b, there are exactly three possibilities. (1) a is less than b. (a b)

Speaking mathematically-how do children learn?, Speaking Mathematically :  ...

Speaking Mathematically :  A Class 2 teacher was explaining the concept of place value to his students, using the number eleven. He started by saying "One and one make eleven." So

Two consecutive integers is 15 find out the larger integer, If the differen...

If the difference among the squares of two consecutive integers is 15 find out the larger integer. Let x = the lesser integer and let x + 1 = the greater integer. The sentence,

How many pages can it print in 4 minutes, Tammi's latest printer can print ...

Tammi's latest printer can print 13.5 pages a minute. How many pages can it print in 4 minutes? Multiply 13.5 by 4 to ?nd out the number of copies made; 13.5 × 4 = 54 copies.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd