Explain introduction to non-euclidean geometry, Mathematics

Assignment Help:

Explain Introduction to Non-Euclidean Geometry?

Up to this point, the type of geometry we have been studying is known as Euclidean geometry. It is based on the studies of the ancient Greek mathematician Euclid. Euclidean geometry was a way to explain or describe the basic layout of the universe. Hundreds of years after him, a few mathematicians developed geometries that are not based on Euclid's axioms. In this chapter, we will explore some concepts of non-Euclidean geometry.

A line, according to Euclid, is perfectly straight and extends infinitely in both directions. Keep in mind that Euclid lived in a world that believed the Earth was flat. But now we know that Earth is a sphere, a line of the Euclidean postulate, perfectly straight and infinitely long, could not exist on the surface of the Earth. A "line" on a spherical surface must follow a curved path. The geometry based on a sphere is called sphere geometry.

Definition

A great circle of a sphere is the circle determined by the intersection of the spherical surface and a secant plane that contains the center of the sphere.

Definition

Lines are great circles in sphere geometry.The equator and longitudinal lines on a globe are great circles. Latitudes on a globe are not great circles.

You already know that on a plane, the shortest distance between any two points is a line segment joining these two points. The shortest distance between any two points on a sphere is measured along a curved path that is a segment of a great circle. The length of a line segment depends on the size of the sphere. Polar points are the points created by a line passing through the center of a sphere intersecting with the sphere. The North and South Poles on Earth are polar points.

Postulate

For any given pair of points on a sphere, there is exactly one line containing them. Conversely, it is also true that a line contains at least two points. But consider now the parallel postulate on a flat plane, "Through a given point not on a given line there is exactly one line parallel to the given line." On a sphere, every line intersects with all other lines.

Postulate 

On a sphere, through a given point not on a given line there is no line parallel to the given line.

Definition

A biperpendicular quadrilateral is a quadrilateral with two sides perpendicular to a third one.
The legs are the two sides perpendicular to the same side.
The base is the side to which the two legs are perpendicular.
The base angle is an angle between base and leg.
The summit is the side opposite the base.
The summit angle is an angle between summit and leg.

Definition

An isosceles birectangular quadrilateral, or a Saccheri quadrilateral is a biperpendicular quadrilateral with congruent legs.

An eighteenth century priest named Saccheri, for whom the Saccheri quadrilateral is named, studied the figure. He tried to use it to prove that the Euclidean parallel postulate was true. Instead he came across something remarkable in the field of non-Euclidean geometry. Using the new postulate on parallel lines, we can prove that a Saccheri quadrilateral is not a rectangle and its two summit angles are not right angles.

Theorem

If the two summit angles of a biperpendicular quadrilateral are unequal, then the larger angle is adjacent to the shorter leg.

Theorem

The summit angles of a Saccheri quadrilateral are congruent.

Theorem

In a Saccheri quadrilateral, the bisector of the base and the summit is perpendicular to both of them.


Related Discussions:- Explain introduction to non-euclidean geometry

Circles, If the distances from origin of the centres of 3 circles x 2 +y 2 ...

If the distances from origin of the centres of 3 circles x 2 +y 2 +2alphaix= a 2 (i=1,2,3) are in G.P. , then length of the tangents drawn to them frm any point on the circles x2+

Percentage, At an office, the manager earns 40% more than a first year empl...

At an office, the manager earns 40% more than a first year employees. The employee earns what fraction of the manager earnings?

Fermats theorem, Fermat's Theorem  If f(x) has a relative extrema at x...

Fermat's Theorem  If f(x) has a relative extrema at x = c and f′(c) exists then x = c is a critical point of f(x). Actually, this will be a critical point that f′(c) =0.

Types of series - special series , Series - Special Series In this pa...

Series - Special Series In this part we are going to take a concise look at three special series.  In fact, special may not be the correct term.  All three have been named th

Probability, If a school has lockers with 50 numbers on each co...

If a school has lockers with 50 numbers on each combination lock, how many possible combinations using three numbers are there.

Test of hypothesis about the population mean, Test of hypothesis about the ...

Test of hypothesis about the population mean When the population standard deviation (S) is identified then the t statistic is defined as             t = ¦(x¯ - µ)/ S x¯ ¦

Mrs, Distributive Property _x7=(3x7)+(2x_)

Distributive Property _x7=(3x7)+(2x_)

Determine the volume of the box, Safe deposit boxes are rented at the bank....

Safe deposit boxes are rented at the bank. The dimensions of a box are (22x5x5) in. Determine the volume of the box? a. 220 in 3 b. 550 in 3 c. 490 in 3 d. 360 in 3

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd