Explain introduction to non-euclidean geometry, Mathematics

Assignment Help:

Explain Introduction to Non-Euclidean Geometry?

Up to this point, the type of geometry we have been studying is known as Euclidean geometry. It is based on the studies of the ancient Greek mathematician Euclid. Euclidean geometry was a way to explain or describe the basic layout of the universe. Hundreds of years after him, a few mathematicians developed geometries that are not based on Euclid's axioms. In this chapter, we will explore some concepts of non-Euclidean geometry.

A line, according to Euclid, is perfectly straight and extends infinitely in both directions. Keep in mind that Euclid lived in a world that believed the Earth was flat. But now we know that Earth is a sphere, a line of the Euclidean postulate, perfectly straight and infinitely long, could not exist on the surface of the Earth. A "line" on a spherical surface must follow a curved path. The geometry based on a sphere is called sphere geometry.

Definition

A great circle of a sphere is the circle determined by the intersection of the spherical surface and a secant plane that contains the center of the sphere.

Definition

Lines are great circles in sphere geometry.The equator and longitudinal lines on a globe are great circles. Latitudes on a globe are not great circles.

You already know that on a plane, the shortest distance between any two points is a line segment joining these two points. The shortest distance between any two points on a sphere is measured along a curved path that is a segment of a great circle. The length of a line segment depends on the size of the sphere. Polar points are the points created by a line passing through the center of a sphere intersecting with the sphere. The North and South Poles on Earth are polar points.

Postulate

For any given pair of points on a sphere, there is exactly one line containing them. Conversely, it is also true that a line contains at least two points. But consider now the parallel postulate on a flat plane, "Through a given point not on a given line there is exactly one line parallel to the given line." On a sphere, every line intersects with all other lines.

Postulate 

On a sphere, through a given point not on a given line there is no line parallel to the given line.

Definition

A biperpendicular quadrilateral is a quadrilateral with two sides perpendicular to a third one.
The legs are the two sides perpendicular to the same side.
The base is the side to which the two legs are perpendicular.
The base angle is an angle between base and leg.
The summit is the side opposite the base.
The summit angle is an angle between summit and leg.

Definition

An isosceles birectangular quadrilateral, or a Saccheri quadrilateral is a biperpendicular quadrilateral with congruent legs.

An eighteenth century priest named Saccheri, for whom the Saccheri quadrilateral is named, studied the figure. He tried to use it to prove that the Euclidean parallel postulate was true. Instead he came across something remarkable in the field of non-Euclidean geometry. Using the new postulate on parallel lines, we can prove that a Saccheri quadrilateral is not a rectangle and its two summit angles are not right angles.

Theorem

If the two summit angles of a biperpendicular quadrilateral are unequal, then the larger angle is adjacent to the shorter leg.

Theorem

The summit angles of a Saccheri quadrilateral are congruent.

Theorem

In a Saccheri quadrilateral, the bisector of the base and the summit is perpendicular to both of them.


Related Discussions:- Explain introduction to non-euclidean geometry

Multistage sampling, Multistage sampling Multistage sampling is similar...

Multistage sampling Multistage sampling is similar to stratified sampling except division is done on geographical/location basis, for illustration a country can be divided into

Markov chain, The Video Club Martin rents movies at "regular price" andat ...

The Video Club Martin rents movies at "regular price" andat "half price". Usually if the films are regularly priced one day, they will be at regular price the next day with probab

Determine the measure of angle, Using the expample provided below, if m∠ABE...

Using the expample provided below, if m∠ABE = 4x + 5 and m∠CBD = 7x - 10, Determine the measure of ∠ABE. a. 155° b. 73° c. 107° d. 25° d. ∠CBD and ∠ABE are vert

.fractions, what is the difference between North America''s part of the tot...

what is the difference between North America''s part of the total population and Africa''s part

Determine the size of belt, On a piece of machinery, the centers of two pul...

On a piece of machinery, the centers of two pulleys are 3 feet apart, and the radius of each pulley is 6 inches. Determine the size of belt (in feet) is required to wrap around bot

Series solution, Find the series solution of2x2y”+xy’+(x2-3)Y=0 about regul...

Find the series solution of2x2y”+xy’+(x2-3)Y=0 about regular singular point

Learning and formulating maths teaching strategies, Before going further, l...

Before going further, let us repeat an aspect of learning which is useful to keep in mind while formulating teaching strategies. A child who can add or subtract in the context of s

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd