Find out all the critical points for the function, Mathematics

Assignment Help:

Find out all the critical points for the function.

1815_critical points.png

Solution

To determine the derivative it's probably simple to do a little simplification previous to we in fact differentiate.  Let's multiply root through the parenthesis & simplify as much as possible. It will let to ignore using the product rule while taking the derivative.

g (t ) = t (2/3) ( 2t -1) = 2t (5/3)  - t (2/3)

Now differentiate.

g′ (t ) =(10/3)t(2/3) -(2/3)t(-1/3) = 10t(2/3)/3 -(2/3t(1/3))

We will have to be careful with this problem.  While faced along a negative exponent it is frequently best to removes the minus sign in the exponent as we did above.  It isn't actually needed but it can make our life simple on occasion if we do that.

Notice that removal the negative exponent in the second term let us to correctly recognize why t = 0 is a critical point for this function.  Once we move second term to the denominator we can apparently see that the derivative doesn't exist at t = 0 and so this will be a critical point.  If you don't get rid of the -ve exponent in the second term several people will wrongly state that t = 0 is a critical point since the derivative is zero at t = 0 .  Whereas it may seem like a silly point, after all in each of case t = 0 is identified as a critical point, it is occasionally important to know why a point is a critical point.  Actually, in some sections we'll illustrates a fact that only works for critical points wherein the derivative is zero.

Thus, we've found one critical point (where the derivative doesn't present), however now we have to determine where the derivative is zero (provided it is certainly...). To help with this usually it's best to combine the two terms into a single rational expression.  Thus, getting a common denominator & combining gives us,

g′ (t ) =10t-2/3t(1/3)

Notice that still we have t = 0 as a critical point.  Doing this kind of combining has to never lose critical points; it's just being done to help us determine them.  As we can illustrate now it's become much easier to rapidly determine where the derivative will be zero.  Recall as well that a rational expression will just be zero if its numerator is zero

Thus, in this case we can illustrates that the numerator will be zero if t =(1/5) and hence there are two critical points for this function.

t = 0     and t = 1/5


Related Discussions:- Find out all the critical points for the function

Value of the game-game theory, Value Of The Game The game value refers ...

Value Of The Game The game value refers to the average pay off per play of the game over an extended period of time

Numerical analysis, just give me some tips to submit a good asignments

just give me some tips to submit a good asignments

Determine the area of the regular octagon, Determine the area of the regula...

Determine the area of the regular octagon with the following measurements. a. 224 square units b. 112 square units c. 84 square units d. 169 square units b. See

Innovation, In the innovations algorithm, show that for each n = 2, the inn...

In the innovations algorithm, show that for each n = 2, the innovation Xn - ˆXn is uncorrelated with X1, . . . , Xn-1. Conclude that Xn - ˆXn is uncorrelated with the innovations X

Describe segments, Describe Segments, Rays, Angles, and Triangles We now...

Describe Segments, Rays, Angles, and Triangles We now define some more basic geometric figures. 1. Segments Definition A segment is the set of two given points and all the

Give an example of numerator and denominator, Give an example of Numerator ...

Give an example of Numerator and Denominator? Fractions represent parts of a whole object. Fractions are written using a horizontal line, with one number on top of the line and

Help me please, Cristiano Ronaldo runs 33.6 kilometres per hour. Usain Bolt...

Cristiano Ronaldo runs 33.6 kilometres per hour. Usain Bolt set world record for running 100 m at 9.58 sec. Show me how to compare these two sportsmen. Step by step.

Marvin helping teachers plan trip what is the minimum no, Marvin is helping...

Marvin is helping his teachers plan a ?eld trip. There are 125 people going on the ?eld trip and each school bus holds 48 people. What is the minimum number of school buses they wi

Seqence and seies, If the M-th term of an Ap is n andn-th term M.find the p...

If the M-th term of an Ap is n andn-th term M.find the p-th term

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd