Find out all the critical points for the function, Mathematics

Assignment Help:

Find out all the critical points for the function.

1815_critical points.png

Solution

To determine the derivative it's probably simple to do a little simplification previous to we in fact differentiate.  Let's multiply root through the parenthesis & simplify as much as possible. It will let to ignore using the product rule while taking the derivative.

g (t ) = t (2/3) ( 2t -1) = 2t (5/3)  - t (2/3)

Now differentiate.

g′ (t ) =(10/3)t(2/3) -(2/3)t(-1/3) = 10t(2/3)/3 -(2/3t(1/3))

We will have to be careful with this problem.  While faced along a negative exponent it is frequently best to removes the minus sign in the exponent as we did above.  It isn't actually needed but it can make our life simple on occasion if we do that.

Notice that removal the negative exponent in the second term let us to correctly recognize why t = 0 is a critical point for this function.  Once we move second term to the denominator we can apparently see that the derivative doesn't exist at t = 0 and so this will be a critical point.  If you don't get rid of the -ve exponent in the second term several people will wrongly state that t = 0 is a critical point since the derivative is zero at t = 0 .  Whereas it may seem like a silly point, after all in each of case t = 0 is identified as a critical point, it is occasionally important to know why a point is a critical point.  Actually, in some sections we'll illustrates a fact that only works for critical points wherein the derivative is zero.

Thus, we've found one critical point (where the derivative doesn't present), however now we have to determine where the derivative is zero (provided it is certainly...). To help with this usually it's best to combine the two terms into a single rational expression.  Thus, getting a common denominator & combining gives us,

g′ (t ) =10t-2/3t(1/3)

Notice that still we have t = 0 as a critical point.  Doing this kind of combining has to never lose critical points; it's just being done to help us determine them.  As we can illustrate now it's become much easier to rapidly determine where the derivative will be zero.  Recall as well that a rational expression will just be zero if its numerator is zero

Thus, in this case we can illustrates that the numerator will be zero if t =(1/5) and hence there are two critical points for this function.

t = 0     and t = 1/5


Related Discussions:- Find out all the critical points for the function

Example of mixing problems, A 1500 gallon tank primarily holds 600 gallons ...

A 1500 gallon tank primarily holds 600 gallons of water along with 5 lbs of salt dissolved into it. Water enters the tank at a rate of 9 gal/hr and the water entering the tank has

Simulation and Modeling, I have some sample simulation and modeling practic...

I have some sample simulation and modeling practice questions using isee Stella software.

Obligatory application and interpretation problem, Obligatory application/i...

Obligatory application/interpretation problem : Next, we need to do our obligatory application/interpretation problem so we don't forget about them. Example : Assume that the

Stat, defination of uper boundarie .

defination of uper boundarie .

How mathematical ideas grow, HOW MATHEMATICAL IDEAS GROW :  In this sectio...

HOW MATHEMATICAL IDEAS GROW :  In this section we shall consider three aspects of the nature of mathematical ideas, namely, that they progress from concrete to abstract, from part

Example of partial fraction decomposition, Example of Partial Fraction Deco...

Example of Partial Fraction Decomposition Evaluate the following integral. ∫ (3x+11 / x 2 -x-6) (dx) Solution: The 1 st step is to factor the denominator so far as

Integration and differentiation, Integration and Differentiation Diffe...

Integration and Differentiation Differentiation deals along with the determination of the rates of change of business activities or merely the process of finding the derivativ

Vertical tangent for parametric equations, Vertical Tangent for Parametric ...

Vertical Tangent for Parametric Equations Vertical tangents will take place where the derivative is not defined and thus we'll get vertical tangents at values of t for that we

Toni tiger, Application Practice Answer the following questions. Use Equat...

Application Practice Answer the following questions. Use Equation Editor to write mathematical expressions and equations. First, save this file to your hard drive by selecting Sav

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd