Find out all the critical points for the function, Mathematics

Assignment Help:

Find out all the critical points for the function.

1815_critical points.png

Solution

To determine the derivative it's probably simple to do a little simplification previous to we in fact differentiate.  Let's multiply root through the parenthesis & simplify as much as possible. It will let to ignore using the product rule while taking the derivative.

g (t ) = t (2/3) ( 2t -1) = 2t (5/3)  - t (2/3)

Now differentiate.

g′ (t ) =(10/3)t(2/3) -(2/3)t(-1/3) = 10t(2/3)/3 -(2/3t(1/3))

We will have to be careful with this problem.  While faced along a negative exponent it is frequently best to removes the minus sign in the exponent as we did above.  It isn't actually needed but it can make our life simple on occasion if we do that.

Notice that removal the negative exponent in the second term let us to correctly recognize why t = 0 is a critical point for this function.  Once we move second term to the denominator we can apparently see that the derivative doesn't exist at t = 0 and so this will be a critical point.  If you don't get rid of the -ve exponent in the second term several people will wrongly state that t = 0 is a critical point since the derivative is zero at t = 0 .  Whereas it may seem like a silly point, after all in each of case t = 0 is identified as a critical point, it is occasionally important to know why a point is a critical point.  Actually, in some sections we'll illustrates a fact that only works for critical points wherein the derivative is zero.

Thus, we've found one critical point (where the derivative doesn't present), however now we have to determine where the derivative is zero (provided it is certainly...). To help with this usually it's best to combine the two terms into a single rational expression.  Thus, getting a common denominator & combining gives us,

g′ (t ) =10t-2/3t(1/3)

Notice that still we have t = 0 as a critical point.  Doing this kind of combining has to never lose critical points; it's just being done to help us determine them.  As we can illustrate now it's become much easier to rapidly determine where the derivative will be zero.  Recall as well that a rational expression will just be zero if its numerator is zero

Thus, in this case we can illustrates that the numerator will be zero if t =(1/5) and hence there are two critical points for this function.

t = 0     and t = 1/5


Related Discussions:- Find out all the critical points for the function

Utilizes second derivative test to classify critical point, Utilizes the se...

Utilizes the second derivative test to classify the critical points of the function,                                               h ( x ) = 3x 5 - 5x 3 + 3 Solution T

The sum of two integers is 36 what is the smaller number, The sum of two in...

The sum of two integers is 36, and the difference is 6. What is the smaller of the two numbers? Let x = the ?rst integer and let y = the second integer. The equation for the su

What is the conditional probability based on die questions, A die is rolled...

A die is rolled twice and the sum of the numbers appearing on them is observed to be 7.What is the conditional probability that the number 2 has appeared at least once? A) 1/3

Vectors, Find the magnitude of the following vectors: 5i+7j

Find the magnitude of the following vectors: 5i+7j

Compound and simple interest, Your grandparents gave you a gift of R2 000 o...

Your grandparents gave you a gift of R2 000 on your 16th birth day. You want to invest the money in an account over four years. You have an option of investing the R2 000 at 8% per

Subtract, Ask question Minimum 100 words accepted# 1000-101

Ask question Minimum 100 words accepted# 1000-101

Distinct eigenvalues –system solving, DISTINCT EIGENVALUES -SYSTEM SOLVING ...

DISTINCT EIGENVALUES -SYSTEM SOLVING : E xample Solve the following IVP. Solution : Therefore, the first thing that we must to do that is, get the eigenvalues

Differential equation and laplace transform, 1. Solve the given differentia...

1. Solve the given differential equation, subject to the initial conditions: . x2y''-3xy'+4y = 0 . y(1) = 5, y'(1) = 3 2. Find two linearly independent power series soluti

Introduction To Numerical Methods & Matlab, Can you help me with the course...

Can you help me with the coursework i have in Matlab?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd