Find out all the critical points for the function, Mathematics

Assignment Help:

Find out all the critical points for the function.

1815_critical points.png

Solution

To determine the derivative it's probably simple to do a little simplification previous to we in fact differentiate.  Let's multiply root through the parenthesis & simplify as much as possible. It will let to ignore using the product rule while taking the derivative.

g (t ) = t (2/3) ( 2t -1) = 2t (5/3)  - t (2/3)

Now differentiate.

g′ (t ) =(10/3)t(2/3) -(2/3)t(-1/3) = 10t(2/3)/3 -(2/3t(1/3))

We will have to be careful with this problem.  While faced along a negative exponent it is frequently best to removes the minus sign in the exponent as we did above.  It isn't actually needed but it can make our life simple on occasion if we do that.

Notice that removal the negative exponent in the second term let us to correctly recognize why t = 0 is a critical point for this function.  Once we move second term to the denominator we can apparently see that the derivative doesn't exist at t = 0 and so this will be a critical point.  If you don't get rid of the -ve exponent in the second term several people will wrongly state that t = 0 is a critical point since the derivative is zero at t = 0 .  Whereas it may seem like a silly point, after all in each of case t = 0 is identified as a critical point, it is occasionally important to know why a point is a critical point.  Actually, in some sections we'll illustrates a fact that only works for critical points wherein the derivative is zero.

Thus, we've found one critical point (where the derivative doesn't present), however now we have to determine where the derivative is zero (provided it is certainly...). To help with this usually it's best to combine the two terms into a single rational expression.  Thus, getting a common denominator & combining gives us,

g′ (t ) =10t-2/3t(1/3)

Notice that still we have t = 0 as a critical point.  Doing this kind of combining has to never lose critical points; it's just being done to help us determine them.  As we can illustrate now it's become much easier to rapidly determine where the derivative will be zero.  Recall as well that a rational expression will just be zero if its numerator is zero

Thus, in this case we can illustrates that the numerator will be zero if t =(1/5) and hence there are two critical points for this function.

t = 0     and t = 1/5


Related Discussions:- Find out all the critical points for the function

Probablity, probability as that of flipping a coin eight times and getting ...

probability as that of flipping a coin eight times and getting all the times the same side of the coin.)

Marketing of herbal products , To help Himalya herbal launch a successful m...

To help Himalya herbal launch a successful marketing campaign in the UK

Hypothesis test, Describe, in your own words, the following terms and give ...

Describe, in your own words, the following terms and give an example of each. Your examples are not to be those given in the lecture notes, or provided in the textbook. By the en

Irregular shapes and solids, find the area of the irregular shape 2cm 4cm 4...

find the area of the irregular shape 2cm 4cm 4cm 2cm 5cm 5cm

Algebra function., problem to understand an problem; f(X-2)=X+3 / X-4

problem to understand an problem; f(X-2)=X+3 / X-4

Show that the vector is in the perfect matching polytope, 1.  Let G = (V,E)...

1.  Let G = (V,E) be a graph for which all nodes have degree 5 and where G is 5-edge is connected. a) Show that the vector x which is indexed by the edges E and for which x e =

Surds and logarithms, what are these all about and could i have some exampl...

what are these all about and could i have some examples of them please

Need answer!, what is the basic unit of weight in the metric system?

what is the basic unit of weight in the metric system?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd