Find out all the critical points for the function, Mathematics

Assignment Help:

Find out all the critical points for the function.

1815_critical points.png

Solution

To determine the derivative it's probably simple to do a little simplification previous to we in fact differentiate.  Let's multiply root through the parenthesis & simplify as much as possible. It will let to ignore using the product rule while taking the derivative.

g (t ) = t (2/3) ( 2t -1) = 2t (5/3)  - t (2/3)

Now differentiate.

g′ (t ) =(10/3)t(2/3) -(2/3)t(-1/3) = 10t(2/3)/3 -(2/3t(1/3))

We will have to be careful with this problem.  While faced along a negative exponent it is frequently best to removes the minus sign in the exponent as we did above.  It isn't actually needed but it can make our life simple on occasion if we do that.

Notice that removal the negative exponent in the second term let us to correctly recognize why t = 0 is a critical point for this function.  Once we move second term to the denominator we can apparently see that the derivative doesn't exist at t = 0 and so this will be a critical point.  If you don't get rid of the -ve exponent in the second term several people will wrongly state that t = 0 is a critical point since the derivative is zero at t = 0 .  Whereas it may seem like a silly point, after all in each of case t = 0 is identified as a critical point, it is occasionally important to know why a point is a critical point.  Actually, in some sections we'll illustrates a fact that only works for critical points wherein the derivative is zero.

Thus, we've found one critical point (where the derivative doesn't present), however now we have to determine where the derivative is zero (provided it is certainly...). To help with this usually it's best to combine the two terms into a single rational expression.  Thus, getting a common denominator & combining gives us,

g′ (t ) =10t-2/3t(1/3)

Notice that still we have t = 0 as a critical point.  Doing this kind of combining has to never lose critical points; it's just being done to help us determine them.  As we can illustrate now it's become much easier to rapidly determine where the derivative will be zero.  Recall as well that a rational expression will just be zero if its numerator is zero

Thus, in this case we can illustrates that the numerator will be zero if t =(1/5) and hence there are two critical points for this function.

t = 0     and t = 1/5


Related Discussions:- Find out all the critical points for the function

Properties of triangle, In triangle ABC, cosecA(sinB.sinC+cosB.sinC) is equ...

In triangle ABC, cosecA(sinB.sinC+cosB.sinC) is equal to..?

Example of mixing problems, A 1500 gallon tank primarily holds 600 gallons ...

A 1500 gallon tank primarily holds 600 gallons of water along with 5 lbs of salt dissolved into it. Water enters the tank at a rate of 9 gal/hr and the water entering the tank has

The Theory of Set, Set M= {m''s/m is a number from 5 to 10}

Set M= {m''s/m is a number from 5 to 10}

Tangent, Tangent, Normal and Binormal Vectors In this part we want to ...

Tangent, Normal and Binormal Vectors In this part we want to look at an application of derivatives for vector functions.  In fact, there are a couple of applications, but they

Items price list, what is the unit price of 6.5 cups of pizza sauce?

what is the unit price of 6.5 cups of pizza sauce?

Fractions, Mr. And Mrs. samuel visited Florida and purchased 120 oranges. ...

Mr. And Mrs. samuel visited Florida and purchased 120 oranges. They gave 1/4 of them to relatives, ate 1/12 of them in the hotel, and gave 1/3 of them to friends. The shipped the

How to multiplying monomials, How to Multiplying Monomials? To multiply...

How to Multiplying Monomials? To multiply monomials: Step 1: Multiply the coefficients. Step 2: Multiply the like variables by adding their exponents. Step 3: Multiply ans

Examples of play and learning maths, Here are a few examples of some team g...

Here are a few examples of some team games. The teams can be small (1-3 children) or big (15-20 children). We start with some games for small children. a) One team places a numb

Find out the next number 320, Find out the next number in the subsequent pa...

Find out the next number in the subsequent pattern. 320, 160, 80, 40, . . . Each number is divided by 2 to find out the next number; 40 ÷ 2 = 20. Twenty is the next number.

Integers, The set of whole numbers also does not satisfy all our requ...

The set of whole numbers also does not satisfy all our requirements as on observation, we find that it does not include negative numbers like -2, -7 and so on. To

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd