Toni tiger, math, Mathematics

Assignment Help:
Application Practice

Answer the following questions. Use Equation Editor to write mathematical expressions and equations. First, save this file to your hard drive by selecting Save As from the File menu. Click the white space below each question to maintain proper formatting.

Hint: Pay attention to the units of measure. You may have to convert from feet to miles several times in this assignment. You can use 1 mile = 5,280 feet for your conversions.

1. Many people know that the weight of an object varies on different planets, but did you know that the weight of an object on Earth also varies according to the elevation of the object? In particular, the weight of an object follows this equation: , where C is a constant, and r is the distance that the object is from the center of Earth.

a. Solve the equation for r.

b. Suppose that an object is 100 pounds when it is at sea level. Find the value of C that makes the equation true. (Sea level is 3,963 miles from the center of the Earth.)


c. Use the value of C you found in the previous question to determine how much the object would weigh in

i. Death Valley (282 feet below sea level).

ii. the top of Mount McKinley (20,320 feet above sea level).

2. The equation gives the distance, D, in miles that a person can see to the horizon from a height, h, in feet.

a. Solve this equation for h.

b. Long’s Peak in Rocky Mountain National Park, is 14,255 feet in elevation. How far can you see to the horizon from the top of Long’s Peak? Can you see Cheyenne, Wyoming (about 89 miles away)? Explain your answer.

Related Discussions:- Toni tiger, math

What are factor trees explain, What are Factor Trees explain? In algebr...

What are Factor Trees explain? In algebra, we often need to factor a number into its prime factors. One way to do this is to use a factor tree. This is a network of numbers, st

Practical geometry, Ask question draw a line parallel to given line xy at a...

Ask question draw a line parallel to given line xy at a distance of 5cm from it #Minimum 100 words accepted#

What is the value of m+n, Every point (x,y) on the curve y=log2 3x is trans...

Every point (x,y) on the curve y=log2 3x is transferred to a new point by the following translation (x',y')=(x+m,y+n), where m and n are integers. The set of (x',y') form the curve

Introduction to why learn mathematics, INTRODUCTION : All of us have encou...

INTRODUCTION : All of us have encountered mathematics while growing up. Some of us have grown to like it, and therefore, enjoy. doing it. Some others have developed a lukewarm rel

Recognize the importance of famous numbers, Activity This activity will ...

Activity This activity will help you recognize the importance of some very famous numbers, as well as learn more about approximations. Directions Using the Internet, provi

Interpretations of derivatives, Interpretations of derivatives. Exampl...

Interpretations of derivatives. Example:   Find out the equation of the tangent line to                                       x 2 + y 2   =9 at the point (2, √5 ) .

Pi, pi to the ten-thousandths

pi to the ten-thousandths

Algebra, logrithim of function?

logrithim of function?

Concurrent deviation method, Normal 0 false false false ...

Normal 0 false false false EN-IN X-NONE X-NONE

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd