Factorization example, Mathematics

Example 

Factorize x2 - 4x + 4.

If we substitute x = 1, the value of the expression will be (1)2 - 4(1) + 4 = 1

If we substitute x = -1, the value of the expression will be (-1)2 - 4(-1) +  4 = 9

If we substitute x = 2, the value of the expression will be (2)2 - 4(2) + 4  = 0

For x = 2, the value of the expression is 0. That is, x - 2 (observe that x - 2 = 0 and x = 2 are one and the same) is one of the factors of the expression x2 - 4x + 4. To obtain the other factor we divide the expression by the factor we got. That will be

x - 2 )

x-  4x + 4

( x - 2

       (-)

x2  -  2x

 


 

   -  2x + 4

 

       (-)

       -  2x + 4

 


 

                      0

 


From the division we observe that x - 2 is the other factor. When this is equated to zero we obtain x = 2. Therefore, the factors of x2 - 4x + 4 are (x - 2)(x - 2) or (x - 2)2.

Now, we look at another identity which is similar to the one you have seen earlier except the (-) sign. The identity is (a - b)2 = a2 - 2ab + b2. The advantage of being familiar with identities is that you do not have to sweat it out by factorizing each and every expression you are given. On the other hand it is not mandatory that each and every expression given should be in conformation with some identity. In this case there is no easy way out except solving the problem by trial and error method to start with and then go for division in order to know other factors.

Another identity of second degree we often come across is 

a2 - b2 = (a + b)(a - b)

According to this identity the difference of squares of any two quantities is equal to the product of the sum and the difference of the two quantities.

Posted Date: 9/13/2012 3:18:02 AM | Location : United States







Related Discussions:- Factorization example, Assignment Help, Ask Question on Factorization example, Get Answer, Expert's Help, Factorization example Discussions

Write discussion on Factorization example
Your posts are moderated
Related Questions
We have seen that if y is a function of x, then for each given value of x, we can determine uniquely the value of y as per the functional relationship. For some f

Find out the tangent line(s) to the parametric curve specified by X = t5 - 4t3 Y = t2 At (0,4) Solution Note that there is actually the potential for more than on

Metallic spheres of radii 6 centimetre, 8 centimetre and 10 centimetres respectively are melted to form a single solid sphere. Find the radius of the resulting sphere.

you are driving on a freeway to a tour that is 500 kilometers from your home. after 30 minutes , you pass a freeway exit that you know is 50 kilometer from your home. assuming that

A small airplane used 5and2over3 gallons of fuel to fly a 2 hour trip.how many gallons were used each hour


Determine the inverse transform of each of the subsequent. (a)    F(s) = (6/s) - (1/(s - 8)) + (4 /(s -3)) (b)   H(s) = (19/(s+2)) - (1/(3s - 5))  + (7/s 2 ) (c)    F(s) =

Amy purchased 6 books at $4.79 each. How much did the books cost altogether? Multiply 6 by $4.79; 6 × $4.79 = $28.74.

explain the basics of permutation

factorize the following algebraic expressions