Explain working of three-phase transformers, Electrical Engineering

Q. Explain working of three-phase transformers?

Transformation in three-phase systems can be accomplished in either of two ways: (1) connecting three identical single-phase transformers to form a three-phase bank (each one will carry one-third of the total three-phase load under balanced conditions); or (2) a three-phase transformer manufactured for a given rating. A three-phase transformer, compared to a bank of three single-phase transformers, for a given rating will weigh less, cost less, require less floor space, and have somewhat higher efficiency.

The windings of either core-type or shell-type three-phase transformers may be connected in either wye or delta. Four possible combinations of connections for the three-phase, two- winding transformers are Y- Δ, Δ -Y, Δ -Δ , and Y-Y. These are shown in Figure with the transformers assumed to be ideal. The windings on the left are the primaries, those on the right are the secondaries, and a primary winding of the transformer is linked magnetically with the secondary winding drawn parallel to it. With the per-phase primary-to-secondary turns ratio (N1/N2 = a), the resultant voltages and currents for balanced applied line-to-line voltages V and line currents I are marked in the figure.

2459_Explain working of three-phase transformers.png

As in the case of three-phase circuits under balanced conditions, only one phase needs to be considered for circuit computations, because the conditions in the other two phases are the same except for the phase displacements associated with a three-phase system. It is usually convenient to carry out the analysis on a per-phase-of-Y (i.e., line-to-neutral) basis, and in such a case the transformer series impedance can then be added in series with the transmission-line series impedance. In dealing with Y- Δ and Δ -Y connections, all quantities can be referred to the Y-connected side. For Δ- Δ connections, it is convenient to replace the -connected series impedances of the transformers with equivalent Y-connected impedances by using the relation.

2044_Explain working of three-phase transformers1.png

It can be shown that to transfer the ohmic value of impedance from the voltage level on one side of a three-phase transformer to the voltage level on the other side, the multiplying factor is the square of the ratio of line-to-line voltages, regardless of whether the transformer connection is Y-Y, Δ -Y, or Δ -Δ . In some cases, where Y-Y transformation is utilized in particular, it is quite common to incorporate a third winding, known as tertiary winding, connected in delta. Such multiwinding transformers with three or more windings are not considered in this text.

Posted Date: 6/27/2013 12:20:36 AM | Location : United States







Related Discussions:- Explain working of three-phase transformers, Assignment Help, Ask Question on Explain working of three-phase transformers, Get Answer, Expert's Help, Explain working of three-phase transformers Discussions

Write discussion on Explain working of three-phase transformers
Your posts are moderated
Related Questions
i need to talk to expert asap.

Properties of a good heat sink For maximum efficiency, a heat sink should be 1)Be in good thermal contact with the transistor case 2)Have the largest surface area 3)Be

Q. Why we Need biasing? Need for biasing : Baising is necessary to establish the quiescent operating point so that the device operates with the linear region without exceeding

Q. Find the frequency of oscillation, amplifier gain ? The transfer function is found to be where the equation is written as a Laplace transform (s=jw). Analysis of thi

we work as a group on Automoted guided vehicles project, with 2 vehicles one is leading and the other is guided and following the first one, i was assigned to write an obstacle avo

Mixed Bonding Displayed by III-V compounds bonding partly ionic and partly covalent. Ionic character of bonding becomes much more prominent since the constituent atoms m

Q. Draw the differentiator circuit. Explain its principle of operation with necessary waveforms ? A circuit in which the output voltage is directly proportional to the derivati

Q. Frequency response of amplifiers? All amplifiers exhibit variations of performance as the signal frequency is changed. The frequency response of an amplifier may be defined

Calculate the N.A of a step index fibre having n 1 =1.48 and n 2 =1.46. What is the maximum entrance angle ψ max for this fibre if the outer medium is air with n 1 =1.0? Given

(i) Sketch a fully-labelled electro-pneumatic circuit showing your actuators in the START position and employ metered out speed control with mono-stable 5/2 DCV's having solenoid a