Computation of an automaton, Theory of Computation

The computation of an SL2 automaton A = ( Σ, T) on a string w is the maximal sequence of IDs in which each sequential pair of IDs is related by |-A and which starts with the initial con?guration of A on w: (p1,w1), where p1 . w1 = ?w?.

Since w is ?nite, the computation of A on w will be ?nite. Since it is required to be maximal, the last ID will be one that does not directly compute any other ID. This will either be of the form (σiσj) , wii where σiσj ∈ T, or of the form (σn?, ε), in which σn? ∈ T but all the input has been consumed. In the ?rst case we will say that the computation is rejecting (or that it crashes). In the second we will say that it is accepting. Note that we have adopted the convention that the automaton halts with FALSE as soon as it encounters a pair of symbols that are not in T.

Posted Date: 3/21/2013 5:46:36 AM | Location : United States







Related Discussions:- Computation of an automaton, Assignment Help, Ask Question on Computation of an automaton, Get Answer, Expert's Help, Computation of an automaton Discussions

Write discussion on Computation of an automaton
Your posts are moderated
Related Questions
Find the Regular Grammar for the following Regular Expression: a(a+b)*(ab*+ba*)b.



We will specify a computation of one of these automata by specifying the pair of the symbols that are in the window and the remainder of the string to the right of the window at ea

We'll close our consideration of regular languages by looking at whether (certain) problems about regular languages are algorithmically decidable.

We saw earlier that LT is not closed under concatenation. If we think in terms of the LT graphs, recognizing the concatenation of LT languages would seem to require knowing, while


De?nition (Instantaneous Description) (for both DFAs and NFAs) An instantaneous description of A = (Q,Σ, δ, q 0 , F) , either a DFA or an NFA, is a pair h q ,w i ∈ Q×Σ*, where

Describe the architecture of interface agency

build a TM that enumerate even set of even length string over a