Computation of an automaton, Theory of Computation

The computation of an SL2 automaton A = ( Σ, T) on a string w is the maximal sequence of IDs in which each sequential pair of IDs is related by |-A and which starts with the initial con?guration of A on w: (p1,w1), where p1 . w1 = ?w?.

Since w is ?nite, the computation of A on w will be ?nite. Since it is required to be maximal, the last ID will be one that does not directly compute any other ID. This will either be of the form (σiσj) , wii where σiσj ∈ T, or of the form (σn?, ε), in which σn? ∈ T but all the input has been consumed. In the ?rst case we will say that the computation is rejecting (or that it crashes). In the second we will say that it is accepting. Note that we have adopted the convention that the automaton halts with FALSE as soon as it encounters a pair of symbols that are not in T.

Posted Date: 3/21/2013 5:46:36 AM | Location : United States







Related Discussions:- Computation of an automaton, Assignment Help, Ask Question on Computation of an automaton, Get Answer, Expert's Help, Computation of an automaton Discussions

Write discussion on Computation of an automaton
Your posts are moderated
Related Questions
This close relationship between the SL2 languages and the recognizable languages lets us use some of what we know about SL 2 to discover properties of the recognizable languages.

The fundamental idea of strictly local languages is that they are speci?ed solely in terms of the blocks of consecutive symbols that occur in a word. We'll start by considering lan

If the first three words are the boys down,what are the last three words??

how many pendulum swings will it take to walk across the classroom?

And what this money. Invovle who it involves and the fact of,how we got itself identified candidate and not withstanding time date location. That shouts me media And answers who''v


De?nition (Instantaneous Description) (for both DFAs and NFAs) An instantaneous description of A = (Q,Σ, δ, q 0 , F) , either a DFA or an NFA, is a pair h q ,w i ∈ Q×Σ*, where


Proof (sketch): Suppose L 1 and L 2 are recognizable. Then there are DFAs A 1 = (Q,Σ, T 1 , q 0 , F 1 ) and A 2 = (P,Σ, T 2 , p 0 , F 2 ) such that L 1 = L(A 1 ) and L 2 = L(

Rubber shortnote