Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
When we say "solved algorithmically" we are not asking about a speci?c programming language, in fact one of the theorems in computability is that essentially all reasonable programming languages are equivalent in their power. Rather, we want to know if there is an algorithm for solving it that can be expressed in any rigorous way at all. Similarly, we are not asking about whether the problem can be solved on any particular computer, but whether it can be solved by any computing mechanism, including a human using a pencil and paper (even a limitless supply of paper).
What we need is an abstract model of computation that we can treat in a rigorous mathematical way. We'll start with the obvious model:
Here a computer receives some input (an instance of a problem), has some computing mechanism, and produces some output (the solution of that instance). We will refer to the con?guration of the computing mechanism at a given point in it's processing as its internal state. Note that in this model the computer is not a general purpose device: it solves some speci?c problem. Rather, we consider a general purpose computer and a program to both be part of a single machine. The program, in essence, specializes the computer to solve a particular problem.
Another striking aspect of LTk transition graphs is that they are generally extremely ine?cient. All we really care about is whether a path through the graph leads to an accepting
Explain Theory of Computation ,Overview of DFA,NFA, CFG, PDA, Turing Machine, Regular Language, Context Free Language, Pumping Lemma, Context Sensitive Language, Chomsky Normal For
Find the Regular Grammar for the following Regular Expression: a(a+b)*(ab*+ba*)b.
To see this, note that if there are any cycles in the Myhill graph of A then L(A) will be infinite, since any such cycle can be repeated arbitrarily many times. Conversely, if the
We'll close our consideration of regular languages by looking at whether (certain) problems about regular languages are algorithmically decidable.
turing machine
Theorem (Myhill-Nerode) A language L ⊆ Σ is recognizable iff ≡L partitions Σ* into ?nitely many Nerode equivalence classes. Proof: For the "only if" direction (that every recogn
Give the Myhill graph of your automaton. (You may use a single node to represent the entire set of symbols of the English alphabet, another to represent the entire set of decima
Proof (sketch): Suppose L 1 and L 2 are recognizable. Then there are DFAs A 1 = (Q,Σ, T 1 , q 0 , F 1 ) and A 2 = (P,Σ, T 2 , p 0 , F 2 ) such that L 1 = L(A 1 ) and L 2 = L(
what problems are tackled under numerical integration
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd