Whites general heteroscedasticity test, Advanced Statistics

Assignment Help:

The Null Hypothesis - H0:  γ1 = γ2 = ...  =  0  i.e.  there is no heteroscedasticity in the model

The Alternative Hypothesis - H1:  at least one of the γi's are not equal to zero i.e. the squared residuals are related to one of the independent variables.

Reject H0 if nR2 > 1640_Tests for Heteroscedasticity.png

MTB > let c23 = c7*c7

MTB > let c24 = c8*c8

MTB > let c25 = c9*c9

MTB > let c26 = c10*c10

MTB > let c27 = c7*c8

MTB > let c28 = c7*c9

MTB > let c29 = c7*c10

MTB > let c30 = c8*c9

MTB > let c31 = c8*c10

MTB > let c32 = c9*c10

C7 = totexp

C8 = income

C9 = age

C10 = nk

C23 = sqtotexp

C24 = sqincome

C25 = sqage

C26 = sqnk

C27 = totexpincome

C28 = totexpage

C29 = totexpnk

C30 = incomeage

C31 = incomenk

C32 = agenk

Regression Analysis: sqres versus totexp, income, ...

* sqnk is highly correlated with other X variables

* sqnk has been removed from the equation.

The regression equation is

sqres = 0.0178 - 0.000232 totexp + 0.000023 income + 0.000298 age - 0.00555 nk

        + 0.000001 sqtotexp + 0.000000 sqincome - 0.000005 sqage

        - 0.000000 totexpincome + 0.000003 totexpage + 0.000015 totexpnk

        - 0.000001 incomeage + 0.000035 incomenk - 0.000021 agenk

 

Predictor            Coef     SE Coef      T      P

Constant         0.017804    0.007900   2.25  0.024

totexp        -0.00023207  0.00005370  -4.32  0.000

income         0.00002344  0.00003865   0.61  0.544

age             0.0002978   0.0003511   0.85  0.396

nk              -0.005551    0.003233  -1.72  0.086

sqtotexp       0.00000060  0.00000011   5.65  0.000

sqincome       0.00000004  0.00000002   1.79  0.074

sqage         -0.00000464  0.00000427  -1.09  0.277

totexpincome  -0.00000041  0.00000013  -3.27  0.001

totexpage      0.00000259  0.00000110   2.36  0.018

totexpnk       0.00001477  0.00001740   0.85  0.396

incomeage     -0.00000110  0.00000090  -1.22  0.223

incomenk       0.00003506  0.00001355   2.59  0.010

agenk         -0.00002146  0.00008647  -0.25  0.804

S = 0.0123952   R-Sq = 3.4%   R-Sq(adj) = 2.5%

Analysis of Variance

Source            DF         SS         MS     F      P

Regression        13  0.0080446  0.0006188  4.03  0.000

Residual Error  1505  0.2312304  0.0001536

Total           1518  0.2392750

 

Source        DF     Seq SS

totexp         1  0.0003007

income         1  0.0000070

age            1  0.0000053

nk             1  0.0000429

sqtotexp       1  0.0037616

sqincome       1  0.0000507

sqage          1  0.0001055

totexpincome   1  0.0010903

totexpage      1  0.0005678

totexpnk       1  0.0009260

incomeage      1  0.0001557

incomenk       1  0.0010217

agenk          1  0.0000095

 

MTB > let k4=1519*0.034

MTB > print k4

 

Data Display

 

K4    51.6460

 

MTB > InvCDF 0.95;

SUBC>   ChiSquare 13.

 

Inverse Cumulative Distribution Function

Chi-Square with 13 DF

P( X <= x )        x

       0.95  22.3620

MTB > # Since nrsq = 1519*0.034= 51.6460 > chi=22.360 we have hetero from white test# Also both B-P and White test seem to indicate that totexp is the culprit

Since nrsq = 51.6460 > 22.360 = , there is sufficient evidence to reject H0 which suggests that there is heteroscedasticity in the model from White's general heteroscedasticity test at the 5% significance level.  Both Breusch Pagan test and White's general heteroscedasticity test seem to indicate that totexp is the culprit as the T value is significant and the P-value is 0.000.


Related Discussions:- Whites general heteroscedasticity test

Evidence-based medicine (ebm), Described by the leading proponent as 'the c...

Described by the leading proponent as 'the conscientious, explicit, and judicious uses of present best evidence in making the decisions about the care of individual patients, and

Cascadedparameters, Cascadedparameters: A group of parameters which is int...

Cascadedparameters: A group of parameters which is interlinked and where selecting the value for the ?rst parameter affects the choice and option available in the subsequent param

Explain missing values, Missing values : The observations missing from the ...

Missing values : The observations missing from the set of data for some of the reason. In longitudinal studies, for instance, they might occur because subjects drop out of the stud

Survey Design, Hello, I have a solution for a Survey Design (proposal) assi...

Hello, I have a solution for a Survey Design (proposal) assignment and looking for an expert that can look at it and correct it in case if it is wrong. Do you have this kind of ser

Scatter plots - non-linear relationship, The scatter plots of SRES1, RESI1 ...

The scatter plots of SRES1, RESI1 versus totexp demonstrates that there is non-linear relationship that exists as most of the points are below and above zero. The scatter plots sho

Data monitoring committees (dmc), Committees to monitor the accumulating da...

Committees to monitor the accumulating data from the clinical trials. Such committees have chief responsibilities for ensuring the continuing safety of the trial participants, rele

Confidence profile method, Confidence profile method : A Bayesian approach ...

Confidence profile method : A Bayesian approach to meta-analysis in which the information in each piece of the evidence is captured in the likelihood function which is then used al

Describe ignorability., Ignorability : The missing data mechanism is said t...

Ignorability : The missing data mechanism is said to be ignorable for likelihood inference if (1) the joint likelihood for the responses of the interest and missing data indicators

Linear regression, regression line drawn as Y=C+1075x, when x was 2, and y ...

regression line drawn as Y=C+1075x, when x was 2, and y was 239, given that y intercept was 11. calculate the residual

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd